NEW ZEALAND DEPARTMENT OF SCIENTIFIC AND INDUSTRIAL RESEARCH BULLETIN 202

Hydrological Studies in the New Zealand Region 1966 and 1967

Oceanic Hydrology North-West of New Zealand Hydrology of the North-East Tasman Sea

by

D. M. GARNER

New Zealand Oceanographic Institute, Wellington

New Zealand Oceanographic Institute Memoir No. 58

NEW ZEALAND DEPARTMENT OF SCIENTIFIC AND INDUSTRIAL RESEARCH BULLETIN 202

Hydrological Studies in the New Zealand Region 1966 and 1967

Oceanic Hydrology North-West of New Zealand Hydrology of the North-East Tasman Sea

by

D. M. GARNER

New Zealand Oceanographic Institute, Wellington

New Zealand Oceanographic Institute Memoir No. 58

Price \$1.50

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/

This publication should be referred to as:

Bull. N.Z. Dep. scient. ind. Res. 202

MS Completed for Publication: October 1968

© Crown Copyright 1970

A. R. SHEARER, GOVERNMENT PRINTER, WELLINGTON, NEW ZEALAND-1970

FOREWORD

Reconnaissance studies of the hydrology of the ocean areas around New Zealand were given priority in the early research programmes carried out by the Institute.

Since 1963 this work has been followed by detailed studies of the summer situation in specific areas of the New Zealand region. The results presented in this memoir extend our knowledge of ocean water circulation to the areas north and west of the North Island.

> J. W. BRODIE, Director, New Zealand Oceanographic Institute.

CONTENTS

OCEANIC HYDROLOGY NORTH-WEST OF NEW ZEALAND

Ū	C Li i i i		DIGLOGI	1 (ORTIN	WEBT OF	1.2.11			P	age
Abstract		82	22	÷.	44	- 4	**	44.2	100	7
INTRODUCTION			7.7	7.7	**.	1.0.1				7
Survey Details		44	44	22	1.0			++		7
Presentation of	Data				++		++		8.6	7
DISCUSSION	<i>i</i>		<u>22</u>	22. 	4.4		**	4.4		8
Geostrophic Cir	culatio	n	++	44	+ + -		1.4		1.00	8
Surface Temperature and Salinity								++	1000	12
Subsurface Temperature and Salinity				22	+ 1	14.00		++		18
Upper Mix	ed Laye	er	24	<u>.</u>		++		++	1.44	18
Salinity Ma	ximum		4.4	368	**			4.4		18
Antarctic In	ntermed	liate	Water	22	2.2				1944	21
Deep Water				- 1-1		1000	1.000			21
Sound Velocity		÷÷ –		44				44		21
ACKNOWLEDGEMENTS	5	÷.	**			14.1	++	-	4.0	22
References										23
APPENDIX Station	Data		++	44			**		1.44	24

Tables

1. Station Circumstances	14.4	24.8	0.00	0.4.4.11	1000	 11400	8
2. Echo-sounding Corrections					++	 	22

Figures

1.	Station positions and bathymetry of the survey area					9
2.	Surface geopotential topography and geostrophic flow	14	**	4.0	2.22	10
3.	Surface temperature		4.4			11
4.	Surface salinity and subsurface maximum salinity					12
5.	Bathythermograph traces		64	4.0		13
6.	Vertical cross sections of temperature and salinity along	the y	western side	of the	New	
	Caledonia Basin	1000	244			14
7.	Vertical cross sections of temperature and salinity along	g the	eastern side	of the	New	
	Caledonia Basin					15
8.	Vertical cross sections of temperature and salinity along t	the east	stern side of	the No.	rfolk	
	Ridge	144		445	144	16
9.	Vertical cross sections of temperature and salinity north o	f New	Zealand			17
10.	Core salinity in the Antarctic Intermediate Water	144.0	14	++		19
11.	Vertical cross section of sound velocity along the eastern	side o	f the Norfol	k Ridge	1	20

Hydrology Of The North-east Tasman Sea

Abstract	66	366	3.2	363	 4.4		14.6	 29
INTRODUCTION		**	++	- S.	 ++			 29
Survey Detail	S		**		 ++	**		 29
Presentation of	of Data	44			 	4.4		 29

Inset 1*

	(0	(B)
(CC)	U	0	9

CONTENTS—continued

Page

DISCUSSION	5.0P	1000	101		14.4	2412	14.41	++	1000	36
Surface Te	emperatur	e and Sal	inity			3.62	10	1.4	+++	36
Subsurface	22						37			
Dynamics				22	**			124		39
Sound Vel	ocity		1.4							39
ACKNOWLEDGN	IENTS	1.1	14	- 22	++	44.5			++	39
References	14.0	24	1.1	4.4	- Sile			22	244	40
Appendix		1.1	10.	++	4.4		++	44		41

Tables

1. Station Circumstances	1.1	++	3.5	44	4.4	9449.	1.943	30
2. Echo-sounding Corrections	**		**	Sel	4.4			38

Figures

1.	Station positions an	d bathym	etry	11	3.5	1.0	+++	(44)	9745	31
2.	Surface isotherms				12			1.1	1.0	32
3.	Surface isohalines	124.00		2.2		3.9	++	1440		33
4.	Cross section of ten	nperature	across Lo	ord Howe	Rise	- 66		44	44	34
5.	Cross section of sal	inity acros	s Lord H	Iowe Rise	44		44			34
6.	Bathythermograph	traces	1.00	**		10		2	344	35
7.	Salinity at core of A	Antarctic I	ntermedi	ate Water	**		4.4	344	++	36
8.	Geopotential topog	raphy with	n respect	to 1,000 an	nd 500 (decibars				37
9.	Vertical cross section	n of soun	d velocity	across Lo	rd Hov	ve Rise		100	122	38

17.3

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/

OCEANIC HYDROLOGY NORTH-WEST OF NEW ZEALAND

by

D. M. GARNER

New Zealand Oceanographic Institute

ABSTRACT

A survey of ocean temperature and salinity during February 1966, the fourth of a series, is described

for the region between the north of New Zealand and the vicinity of Norfolk Island. Geopotential calculations showed a net east-going geostrophic flow through the survey area above the core of the Antarctic Intermediate Water at a depth of about 1 km. A large wave in this flow, probably topographically induced, appeared to the east of the Norfolk Ridge. No indication of a Tropical Convergence or of a south-west-flowing Trade Drift was found of a Tropical Convergence or of a south-west-flowing Trade Drift was found.

Calculations of sound velocity showed a belt of relatively high velocity running zonally through the middle of the survey area in the axis of the SOFAR channel. Velocity corrections for echo soundings were derived for the region.

INTRODUCTION

SURVEY DETAILS

A survey of the temperature and salinity of ocean waters north-west of New Zealand was undertaken by the New Zealand Oceanographic Institute from m.v. Taranui during February 1966. This cruise was the fourth in a series of hydrological surveys designed to provide a representation of the summer hydrological situation in oceanic waters around New Zealand. Previous cruises have covered the region east of the northern part of New Zealand (Garner, 1967a; Ridgway in press) and the south-east Tasman Sea (Garner, 1967b).

In Fig. 1 the station plan of the cruise is shown in relation to the main bathymetric features of the region surveyed. Four lines, each of six stations about 90 miles apart and approximately meridionally oriented, were worked between latitudes 27° and 35° S. The first two lines (Sta. E 496–501 and E 502-507) lay over the western and eastern sides of the New Caledonia Basin where the bottom slopes upwards to the Lord Howe Rise and the Norfolk Ridge, respectively. The other two lines (Sta. E 508-514-519) lay over the western and eastern margins, respectively, of the Norfolk Basin, which is flanked on the west by the Norfolk Ridge and on the east by the Three Kings Rise. The last two stations of the cruise were to the north-east of North Cape on the south-western margin of the South Fiji Basin.

At each station the vertical variation of temperature and salinity from the surface to a maximum depth of 2.5 km was measured using the bathythermograph, reversing bottles, and reversing thermometers as in the previous cruises of this series. Temperatures and pressures at sampling points were calculated from the reversing thermometer readings through the use of LaFond's (1951) tables and the thermometer certificates. Salinities of water samples drawn from the reversing bottles were determined at sea with an inductively coupled salinometer.

PRESENTATION OF DATA

The station circumstances (times, positions, weather) are listed in Table 1, and the station data (observed temperatures, depths, pressures and salinities, with derived values of density, geopotential anomaly and sound velocity) are listed in the Appendix. The tables of LaFond (1951), Bark et al. (1964), and the U.S. Navy Hydrographic Office (1956) were used for these derivations. Tracings of bathythermograph records are reproduced in Fig. 5. Distributions of temperature and salinity on various surfaces are mapped in Figs. 3-10 in support of the discussion following.

GEOSTROPHIC CIRCULATION

Fig. 2 is a map of the dynamic topography of the survey area referred to an isobaric surface of 1,000 decibars. Essentially similarly shaped topography was obtained for the sea surface with respect to the 500, 1,000, 1,750, and 2,000 decibar surfaces, so evidently the choice of a reference surface is not critical for this region as it was, for instance, in the south-east Tasman Sea (Garner, 1967b). The 1,000 decibar reference surface has been chosen for the pattern reproduced here to facilitate comparison with other topographies published both in this series of studies and elsewhere.

If the reference surface be supposed level, the contours of dynamic height (Fig. 2) are also streamlines of the surface circulation that would be in geostrophic equilibrium with the observed density distribution. The net flow through the survey area at the surface (and, apparently, at all levels within the upper few hundred metres) was east-going at all latitudes. A large perturbation in this zonal flow occurred east of the Norfolk Ridge. While station spacing was too coarse to define the configuration of this feature uniquely, it has been depicted (Fig. 2) as a trough in the topography, the axis of which extended from west of North Island towards Norfolk Island. A relatively strong north-west-going stream, counter to the general trend, ran south of Norfolk Island for a short distance as part of this disturbance.

The relation of the topography of the survey area to that of the Pacific as a whole may be seen by comparing Fig. 2 with the work of Reid (1961, Fig. 1) or Wyrtki (1962b, Fig. 1). On the basis of these studies the survey area is seen to be situated on the southern slopes of a topographic ridge with its axis lying in the subtropics, approximately on the latitude of Fiji. Along the northern side of this ridge the South Equatorial Current flows westwards. The East Australian Current flows southwards along the Australian coast around the western end of this ridge, and the return flow of the South Pacific Subtropical Gyral

TABLE 1. Station Circumstances

Station	N.Z. Da (1966 Fe	ate/Time ebruary)	Lotituda	Longitude	Danath	A in Tours	W	ind
No.	Start	Finish	°S	°E	m	Air Temp. °C	Dir. °T	Speed kts
E 496	10/1244	1455	35° 00′	166° 00′	2,350	21.0	040	14
E 497	11/1055	1328	33° 30'	164° 49'	3,065	21.1	280	35
Ē 498	12/0635	0949	31° 54'	164° 20'	4.5	21.9	265	4
E 499	12/1900	2055	30° 30'	164° 31'	11	23.0	calm	1000
E 500	13/0615	0813	28° 59'	164° 24'	3,396	24.5	045	3
E 501	13/1812	1957	27° 30'	164° 30'	3,275	24.1	120	10
E 502	14/0929	1120	27° 30'	166° 30'	3,508	23.7	110	9
E 503	14/2140	2315	29° 00'	166° 32'	3,406	23.5	090	6
E 504	15/0825	1011	30° 30'	166° 29'	2,995	23.7	050	12
E 505	15/2120	2400	32° 00′	165° 53'	2.2	22.4	050	6
E 506	16/1025	1151	33° 30'	166° 28′		21.0	060	4
E 507	16/2210	2345	35° 00′	167° 30′	2,672	21.4	090	4
E 508	17/1703	1900	35° 00′	170° 30'	2,014	20.7	100	12
E 509	18/0848	1135	33° 00′	170° 18′	2,280	22.5	calm	
E 510	18/2145	2335	32° 00′	169° 00′	10	23.6	040	9
E 511	19/1034	1353	30° 27'	168° 32'		24.2	020	11
E 512	20/0253	0504	28° 57'	168° 57'	3,250	24.3	055	5
E 513	21/0428	0806	27° 30′	169° 00′	101	25.7	090	12
E 514	21/2204	2343	26° 45'	170° 25′	- 10 - E	25.9	080	13
E 515	22/1046	1216	27° 24′	171° 35'		25.5	090	16
E 516	22/2326	2453	29° 00′	171° 30′	4.4	23.6	090	5
E 517	23/1017	1200	30° 25'	171° 35′	1.1	23.5	090	3
E 518	23/2122	2347	32° 00′	172° 00′	0.	22.8	calm	2007
E 519	24/0900	1125	33° 24'	171° 33′	**	22.5	calm	
E 520	25/0846	1021	33° 50'	173° 00'		22.0	calm	
E 521	25/1540	1718	33° 50'	174° 00′	2,363	24.0	calm	

Air (screen) temperature and wind properties were estimated at bridge level. Uncorrected depths were derived from an intermittently operating echo sounder.

FIG. 1. The survey area north-west of New Zealand showing station positions against the bathymetry of the region. Isobaths are shown in metres at intervals of 1 km. Areas where the depth is less than 1 km are stippled. The cruise track is shown as a broken line.

system flows eastwards, to the north of New Zealand, along the southern slopes of the governing high. Surface geopotential anomalies accord well when comparing the present work with these broader schemes previously established, and thus it might be inferred that upper water layers of this survey were derived from the main outflow from the Tasman Sea of the East Australian Current. Wyrtki (1962b) compared his topographic map of the south-west Pacific with charts of average surface currents derived from ships' reports, and found "good agreement south of 30° S and throughout the range of the East Australian Current". These average surface current charts, (for example, Wyrtki (1960) or Defant (1961, Plate 8)) show to the south of the relatively strong South Equatorial

FIG. 2. Geopotential topography of the sea surface relative to the 1,000 decibar isobaric surface. Contours of geopotential anomaly are in dynamic metres and are also stream-lines of the relative geostrophic flow at the surface, in the direction of the arrows.

Current an extensive, weaker flow towards the west or south-west between 10° S and 30° S at the surface in the south-west Pacific, practically opposite to the flow indicated by the geopotential topography. Wyrtki (1962b) stated that "this flow to the west, the Trade Drift, is a wind drift at the surface, and consequently cannot appear as a geostrophic current". Since other major wind-

driven currents seem to be associated with rather deep-lying horizontal pressure gradients arising from the mutual adjustment of velocity and density (for example, the South Equatorial and Circumpolar Currents), this implies the existence of a rather special, almost completely ageostrophic, situation. Reid (1961), also, compares various current atlases with the general surface topography

Fig. 3. Isotherms of sea surface temperature ($^{\circ}c$) derived from station data and thermograph records along the cruise track. Filled circles at the station positions mark the absence of a well defined isothermal upper mixed layer.

of the whole Pacific Ocean relative to the 1,000 decibar surface. He concluded, through the good general agreement, that "the geostrophic currents can be accepted with some confidence in areas where other data are lacking". From experience with the magnitude of the ship's leeway while hove-to on station during the current survey series, one wonders whether these "current charts"

derived from navigational records can do other than measure some effect of mean wind patterns, except in regions of rather strong, steady currents. Reid (1961) pointed out that "where current and wind are opposed geopotential anomaly will decrease along a streamline", and vice versa, thus accounting for a rise in dynamic topography towards the west in the trade-wind region.

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/

FIG. 4. Full lines are isohalines of the sea surface salinity (‰). Broken lines are isohalines on the surface of maximum salinity. Where these converge the salinity maximum lies at the surface. Filled circles at the station positions mark the existence of a subsurface maximum in the salinity-depth measurements.

SURFACE TEMPERATURE AND SALINITY

Surface temperature over the survey area (Fig. 3) ranged from nearly 26°C in the north-east to about 21°C in the south. A localised area of lower surface temperature (\sim 19°C) between the Three Kings Islands and the northern coast of New Zealand presumably marked upwelling on the shelf. This

region was traversed at night in very calm conditions, and the cooler surface waters contained large numbers of phosphorescent animals. Surface isotherms over the survey area had a marked trend from the north-west to the south-east, surface water being considerably warmer in the east of the area than in the west. A broad ridge of high salinity ($\sim 35.7\%$) with its axis following, approximately, the trend of the 24°C isotherm dominated the surface salinity distribution (Fig. 4). Both surface temperature and salinity decreased fairly rapidly to the south of this ridge. Isolines had a wave-like configuration with warm, highly saline water tending to lie over the bottom ridges and colder, less saline water over the troughs. For the basically east-going flow through the survey area described in the previous section, these deflections accord with elementary theories concerning the influence of bottom topography on ocean currents described, for example, by Defant (1961, pp. 429–36).

Simple correlation between surface temperature and salinity was no longer evident on the northern side of the high salinity ridge, where isotherms and isohalines tended to intersect at large angles. Lowest salinity in this region was found north-west of Norfolk Island, and highest surface temperature was found in the north-east of the survey area.

FIG. 5. Bathythermograph traces from the stations indicated.

Inset 2*

FIG. 6A. Vertical cross section of temperature, °C, along the western side of the New Caledonia Basin.
B. Vertical cross section of salinity, ‰, along the western side of the New Caledonia Basin.
North is at the left. The scale of pressure is numerically close to that of depth in metres

(see Appendix).

FIG. 7A. Vertical cross section of temperature, °C, along the eastern side of the New Caledonia Basin.
B. Vertical cross section of salinity, %, along the eastern side of the New Caledonia Basin.
North is at the left. The scale of pressure is numerically close to that of depth in metres (see Appendix).

FIG. 8A. Vertical cross section of temperature, °C, along the eastern side of the Norfolk Ridge.
B. Vertical cross section of salinity, ‰, along the eastern side of the Norfolk Ridge. North is at the left. The scale of pressure is numerically close to that of depth in metres (see Appendix).

(cc)

FIG. 9A. Vertical cross section of temperature, °c, to the north of New Zealand.
B. Vertical cross section of salinity, %, to the north of New Zealand.
North is at the left. The scale of pressure is numerically close to that of depth in metres (see Appendix).

SUBSURFACE PROPERTIES

Upper Mixed Layer

At some stations of the survey the top of the thermocline layer was at a depth of several tens of metres and was overlain by a nearly isothermal upper mixed layer. At other stations the temperature decreased steadily with increasing depth right from the sea surface. A clearly defined example of the first situation may be seen in the bathythermograph trace from Sta. E 515 (Fig. 5), where the upper isothermal layer was about 36 m thick, and the transition at its base to the upper part of the thermocline layer was particularly pronounced. An extreme example of the second situation was found at Sta. E 508 where the bathythermograph trace (Fig. 5) revealed a nearly constant vertical temperature gradient from a depth of some 80 m right up to the sea surface. Not all the bathythermograms obtained can be readily placed in these two classes, but there was a tendency for soundings of the second kind, in which the upper mixed layer was absent or ill defined, to occur along the southern side of the region of high surface salinity, and in the topographic trough (below the 1.6 dynamic metre contour, say) which extended into this region. This division can also be seen in the vertical temperature cross sections, especially south of Sta. E 498 (Fig. 6A) and south of E 510 (Fig. 8A).

Bathythermograph traces obtained during an earlier survey of this series (Garner, 1967b) show that the isothermal upper mixed layer had recovered its structure in the northern part of the south-east Tasman Sea (latitude 41-42° S) but had lost it again further to the south in the region of the Subtropical Convergence. Possibly, these variations in the thermal structure of near-surface waters with latitude are due to corresponding variations of vertical velocity components associated with zones of horizontal convergence and divergence in the surface ocean circulation. The absence of an isothermal upper mixed layer would then be due to a continued upwards movement of colder water into near-surface layers at a rate sufficient to counteract the effect of vertical mixing by wind and wave.

The upper 200 m or so of the water column is, in general, a region of rather weak vertical salinity gradient. The top of the halocline layer, in which the salinity begins to fall rather rapidly with increasing depth, is particularly well marked in the vertical cross sections of Figs. 6B and 8B. Where this halocline lies deepest an inflexion is also present in the temperature depth curve at the top of the halocline (for example, at about 350 m at Sta. E 501, and about 250 m at Sta. E 511). This is similar to the situation typical of many stations in the south-east Tasman Sea (Garner, 1967b) for which it was suggested that the upper nearly isohaline region represents the upper mixed layer in its maximum winter development. If this explanation is valid, at the two stations mentioned above the summer thermocline layer in the upper 100 m of the water column can be distinguished from the top of the permanent thermocline at the greater depth.

Salinity Maximum

At all stations within the region of high surface salinity (>35.7‰, say) except for sta. E 511, salinity decreased steadily with increasing depth throughout the upper part of the water column. Beneath the surface water of lower salinity found in both northern and southern parts of the survey area, however, salinity increased with depth to reach a weak maximum between 30 and 100 m. Except for an isolated high around Sta. E 511, salinity on the surface of maximum salinity increased northwards over the whole survey area, as shown by the broken isohalines in Fig. 4. Large-scale maps of the surface oceanic salinity distribution (for example, Defant, 1961, Plate 5) show that the source of high salinity water in the South Pacific is centred in the eastern subtropical part of this ocean (at about 20° S, 120° W). From this centre a ridge of high salinity extends westwards past the north of New Zealand almost to the east coast of Australia. From comparison of the topography and salinity patterns of Figs. 1 and 4, it would appear that the high salinity water north of New Zealand found during the present investigation was flowing eastwards out from the Tasman Sea, having presumably been introduced into the Coral Sea at some lower latitude from the subtropical source region. Comparison of the salinity distribution in upper water layers with Wyrtki's (1962a) classification of water masses in the south-west Pacific region, however, identifies this high salinity water with the southern component of his subtropical lower water which, he suggests, enters the Coral Sea to the north of New Zealand, and is continuous with the subtropical surface water of the eastern Pacific. The zonal salinity gradient along the axis of the high surface salinity ridge in Fig. 4 is indeterminate, but Wyrtki's geographically more extensive study showed salinity in the core of the southern component of the subtropical lower water to be increasing eastwards, indicating the spreading of this water from that direction, either by direct flow or by lateral mixing.

FIG. 10. Isohalines (‰) of salinity in the core of the Antarctic Intermediate Water. The position of the 1 km isobath around the north of New Zealand is indicated.

Resolution of the direction of movement of subtropical water to the north of New Zealand will probably require direct measurement of current flow, independent of the hydrology.

Wyrtki's (1962a) analysis was based on observations made during the late summer of 1960, and revealed salinities in the subtropical water north of New Zealand rather higher (<35.9%)

Inset 3

than were found by this survey ($\sim 35.7\%_0$). Salinity greater than $35.9\%_0$ was also encountered around the northern part of New Zealand in the summer of 1955 (Garner, 1961, Fig. 3), and again in summer, 1967 (Garner and Ridgway, 1965, Fig. 45), so the influence of this water mass may not have been as pronounced during the survey period as it can sometimes appear to be. Wyrtki (1960) states than monsoon winds bring relatively low-salinity equatorial waters from the western Pacific into the Coral Sea during January-March. The lower surface salinities in the northern part of the survey area will thus represent the southern limit of the incursion of this equatorial water. During September 1966 it was found (B. R. Stanton, pers. comm.) that surface salinity continued to rise slowly between the northern part of the survey area and New Caledonia, where a value of about 35.8‰ was reached.

The mean current charts referred to earlier show a *Tropical Convergence* to the north of New Zealand where the Trade Drift, moving south-westwards, meets the east-flowing water from the Tasman Sea circulation system around the north of North Island. The maps of Wyrtki (1960) show the seasonal movement in latitude

of this feature; it appears furthest south, around 30° S, during the summer months but loses its definition in February. From the above definition it might be expected that the Tropical Convergence would be marked by the southern edge of the belt of high surface salinity—by the more southerly 35.6% isohaline in Fig. 4, for instance. In comparing the hydrology with the mean current maps, however, Wyrtki (1962) stated that the position of the Tropical Convergence coincided with the northern boundary of the southern component of the subtropical lower water north of New Zealand; south of the Convergence the salinity maximum was said to lie at the surface, while to the north a subsurface maximum was described. No hydrological structure suggesting the existence of a tropical convergence was revealed by the present survey.

FIG. 11. Vertical cross section of sound velocity (m/sec) along the eastern side of the Norfolk Ridge, corresponding to the hydrological sections of Fig. 8.

Antarctic Intermediate Water

Below the halocline, salinity decreased with increasing depth at all stations to reach a minimum (<34.5%) at about 1.1 km. This minimum marks the core of the Antarctic Intermediate Water the properties of which, over the Pacific as a whole, have been discussed by Reid (1965) and, for the south-west Pacific in particular, by Wyrtki (1962a). Both these studies show that the Antarctic Intermediate Water enters the Coral Sea from the east between Fiji and New Zealand. Wyrtki (1962a, Fig. 12) found a tongue of low salinity (<34.4%) in the Intermediate core between latitudes 22° S and 27° S south of Fiji, extending westwards towards New Caledonia. He suggested that this branch was derived from a strong northward flow of Antarctic Intermediate Water around the end of the Chatham Rise east of New Zealand. Reid (1965, Fig. 24), looking at a geographically more extensive situation, described a similar tongue south of Fiji but showed that its origin extended well into the eastern Pacific. It was inferred that the Antarctic Intermediate Water reached the Coral Sea by way of a long gyral involving, in turn, the deeper waters of the Circumpolar, the Peru, and the South Equatorial Currents.

The variation of salinity on the minimum surface throughout the survey area has been plotted (Fig. 10). Salinity gradients on this surface were very weak, as is general over the whole Tasman Sea. A tendency is evident for slightly higher salinities ($\sim 34.5\%$) to lie over the shallower water north of the Three Kings Islands (Sta. E 519) and the southern part of the Norfolk Ridge (Sta.E 510). This effect, presumably due to increased vertical mixing over topographic features, has been noticed elsewhere for the Antarctic Intermediate layer (Garner, 1967b). Salinity on the minimum surface fell in the north and northeastern parts of the survey area. This trend is associated with the presence to the near north of the main inflow of Antarctic Intermediate Water into this region, as described earlier.

Deep Water

Below the core of the Antarctic Intermediate Water salinity increased slowly with increasing depth. The stations of this survey were designed to reach a depth of 2–2.5 km, sufficient to define adequately the Intermediate salinity minimum but not necessarily to sample the deepest waters of the basins investigated. Deep data are sufficient, however, to show that a greater vertical salinity gradient was observed below the Intermediate core in the south-east Tasman Sea (Garner, 1967b, Fig. 5) (giving a salinity around 34.7% at a depth of 2 km) than in the present work for the New Caledonia Trough (Figs. 6B and 7B) (where deep salinity was just over 34.6% in water of equivalent temperature).

These differences are explained by Wyrtki (1961), who found that the deeps of the New Caledonia Trough and the South Fiji Basin are filled, from the north, with Pacific Bottom Water a derivative of the Antarctic Bottom Water. This water also fills the bottom of the Tasman Basin but, unlike areas further north, it has a weak salinity maximum at a depth of about 3 km in the Tasman. This marks the core of the Pacific Deep Water, a remnant of North Atlantic Deep Water, the presence of which accounts for the higher salinity of the deeper waters in the Tasman Basin, south of the Lord Howe Rise.

SOUND VELOCITY

This survey provides a further contribution towards definition of the SOFAR sound channel configuration around New Zealand. Apart from some very small fluctuations in the upper mixed layer at a few stations, sound velocity decreased with increasing depth over the survey area to reach a minimum at some 1,300 m. This minimum marks the axis of the SOFAR sound channel, the general characteristics of which have been described for the New Zealand region by Garner (1967c). A vertical cross section of sound velocity along the eastern side of the Norfolk Ridge (Fig. 11) matches the hydrological sections of Fig. 8. The velocity of sound in the SOFAR axis of this section reached a maximum of nearly 1,490 m/sec at Sta. E 511. Comparison of Figs. 8 and 11 shows that this was derived from the dip in all isopleths at this station associated with the large wave in the generally east-going geostrophic flow east of the Norfolk Ridge. A sound velocity maximum in the SOFAR axis also appeared in the other meridional sections (not reproduced here) corresponding to Figs. 6, 7, and 9, but more weakly defined than was shown in Fig. 11. A belt of high SOFAR velocity thus appeared to run zonally through the centre of the survey area, its axis defined by Sta. E 499, E 504, E 511, and E 518, in about latitude 31° S. The earlier general study of SOFAR channel characteristics (Garner, 1967c), based on a compilation of hydrological stations in the New Zealand region, also showed that "this belt of high sound velocity extends north-westwards from the northern tip of New Zealand, passing between Norfolk and Lord Howe Islands". It was suggested that the isotherm dip associated with

this belt would probably mark the dynamical boundary "between a general west-going movement of water into the Tasman Sea to the north of 30° S, and an east-going flow out from the Tasman between this latitude and New Zealand". This interpretation would imply the existence north of 30° S of a west-flowing movement more general than was indicated by the present survey, which revealed, rather, a localised flow with a west-going component due to perturbation of an east-flowing stream.

Echo-sounding Corrections

A further contribution, too, is made to a reevaluation for the New Zealand region of Matthews' (1939) tables for the correction of sonic soundings in terms of regional variations of the velocity of sound. Table 2 gives a comparison of mean vertical sounding velocities, and corrections to an echosounding machine calibrated for a velocity of 1,500 m/sec, between Matthews' estimates for the survey area (his region 46) and the survey data. This is given for a northern station, E 515, and for a southern station, E 507. Observed values for the southern station are closely approximated by Matthews' estimates. In the north of the survey area the corrections derived tend to be rather larger than those given in the earlier tables. TABLE 2. Sounding Velocities and Corrections

Column A-depth (metres).

Column B—mean vertical sounding velocity (m/sec). Column C—correction (metres) to be applied algebraically to the sounding from a

machine set for a velocity of 1,500 m/sec.

	Matthew	vs area 46	Station	E 507	Station E 514		
Α	В	С	в	С	В	С	
2	1524	3	1514.5	1.9	1526.4	3.5	
4	1517	4	1510.3	2.8	1521.0	5.7	
6	1510	4	1506.8	2.6	1516.1	6.5	
8	1505	3	1503.3	1.8	1511.5	6.1	
10	1501	1	1500.9	0.6	1507.4	4.8	
12	1499	- 1	1498.9	-0.9	1504.0	3.3	
14	1497	— 3	1497.4	-2.6	1501.7	1.6	
16	1496	- 4	1496.1	-4.1	1499.5	-0.1	
18	1495	- 6	1495.5	-5.5	1498.4	-1.5	
20	1495	— 7	1495.4	-6.6	1498.0	-2.6	
22	1494	- 9	1495.2	-7.4	1497.7	-3.4	
24	1494	-10	1495.0	-8.0	1497.5	-4.0	
26	1495	- 9	1495.0	8.5	1497.2	-4.5	

ACKNOWLEDGMENTS

Station overside work was done by A. Langford, W. Main, and I. Slater, NZOI, and M. Johnstone, University of Queensland. N. M. Ridgway made salinity determinations and checked all thermometer readings. The writer is grateful for the assistance of this team and for the ready co-operation of Captain D. K. Matheson and his crew.

REFERENCES

- BARK, L. S.; GANSON, P. P.; MEISTER, N. A. 1964: "Tables of the Velocity of Sound in Sea Water". Pergamon Press, London.
- DEFANT, A. 1961: "Physical Oceanography Vol. I". Pergamon Press, London. 729 pp.
- GARNER, D. M. 1961: Hydrology of New Zealand Coastal Waters, 1955. Bull. N.Z. Dep. scient. ind. Res. 138.
- 1967a: Hydrology of the Southern Hikurangi Trench Region. Bull. N.Z. Dep. scient. ind. Res. 177.
- 1967b: Hydrology of the South-east Tasman Sea. Bull. N.Z. Dep. scient. ind. Res. 181.
- 1967c: Oceanic Sound Channels around New Zealand. N.Z. Jl mar. Freshwat. Res. 1 (1): 3-15.
- GARNER, D. M.; RIDGWAY, N. M. 1965: Hydrology of New Zealand Offshore Waters. Bull. N.Z. Dep. scient. ind. Res. 162.
- LAFOND, E. C. 1951: Processing Oceanographic Data. Publs U.S. hydrogr. Off. 614.
- MATTHEWS, D. J. 1939: Tables of the Velocity of Sound in Pure Water and Sea Water for Use in Echo-sounding and Sound Ranging. *Publs Admiralty hydrogr. Dep.* 282.

- REID, J. L. 1961: On the Geostrophic Flow at the Surface of the Pacific Ocean with respect to the 1,000 decibar Surface. *Tellus 13 (4)*: 489-502.
- 1965: Intermediate Depth Waters of the Pacific Ocean. Johns Hopkins Univ. Stud. Oceanogr. 2.
- RIDGWAY, N. M. (in press): Hydrology of the Southern Kermadec Trench Region. Bull. N.Z. Dep. scient. ind. Res. 56.
- UNITED STATES NAVY HYDROGRAPHIC OFFICE, 1956: Tables for Rapid Computation of Density and Electrical Conductivity of Sea Water. *Publs U.S. hydrogr. Off. SP-11.*
- WYRTKI, K. 1960: The Surface Circulation in the Coral and Tasman Seas. Tech. Pap. Div. Fish. Oceanogr. C.S.I.R.O. Aust. 8.
- 1961: The Flow of Water into the Deep Basins of the Western South Pacific Ocean. Aust. J. mar. Freshwat. Res. 12: 1-16.
- 1962a: The Subsurface Water Masses in the Western South Pacific Ocean. *Ibid. 13 (1)*: 18–47.
- 1962b: Geopotential Topographies and Associated Circulation in the Western South Pacific Ocean. *Ibid. 13 (2)*: 89–105.

APPENDIX

NUMERICAL STATION DATA

Station numbers are prefixed with the letter E. Positions, dates, etc., of stations are listed in Table 1. The significance of column headings is as follows:

P is the thermometrically measured pressure in decibars at each sampling point. This is numerically nearly equal to the geometric depth in metres. A more accurate conversion using representative mean density figures (LaFond, 1951, p. 8) is as follows:

pressure (decibars):	200	400	600	800	1000	1200	2000	2500
depth (metres):	199	398	595	793	991	1484	1976	2467
·		0						

- T is the water temperature in $^{\circ}$ C.
- S is the water salinity in %.
- σ_t is the water density, isothermally reduced to surface pressure. The " σ " value is derived from the specific gravity, ρ , according to the relation:

$$\sigma = (\rho - 1) \times 10^{5}$$

- $\Sigma \Delta D$ is the cumulative anomaly of dynamic height (LaFond, 1951) of the sea surface from the sample depth. Expressed in dynamic metres.
 - C is the in situ sound velocity (Bark et al., 1964) in m/sec.

Ρ	Т	S	σ_{i}	SAD	С	Р	Т	S	σ_1	£4D	С
E496						E49 <u>9</u> (contd)				
0 9 18 27 45 63 98 137 178 273 352	21.43 21.34 21.16 19.95 18.67 16.44 15.20 14.41 13.93 13.09 12.12	35.53 35.55 35.55 35.55 35.46 35.33 35.24 35.19 35.10 34.99	24.81 24.83 24.90 25.23 26.03 26.21 26.31 26.38 26.48 26.59	0.00 0.03 0.06 0.13 0.17 0.24 0.31 0.38 0.54 0.66	1526.3 1526.2 1525.9 1522.7 1519.3 1513.0 1509.5 1507.4 1506.4 1505.0	701 809 902 989 1102 1200 1500 2000 2500	9.16 7.93 7.04 6.34 5.67 5.05 3.65 2.45 2.02	34.71 34.59 34.51 34.49 34.47 34.48 34.55 34.63 34.63	26.89 26.99 27.06 27.13 27.20 27.28 27.49 27.67 27.75	1. 42 1.56 1.67 1.76 1.88 1.98 2.23 2.55 2.80	1498.8 1494.7 1492.6 1491.2 1490.7 1490.6 1488.5 1491.7 1498.1
446 542 656 711 789 885 989 1043 1314 1794 2248	10.83 9.75 8.12 7.53 6.89 6.20 5.68 5.32 3.94 2.73 2.26	34.85 34.74 34.60 34.56 34.52 34.48 34.48 34.48 34.48 34.51 34.60 34.65	26.71 26.82 26.97 27.02 27.09 27.14 27.21 27.25 27.44 27.62 27.70	0.80 0.94 1.08 1.15 1.24 1.34 1.45 1.51 1.74 2.07 2.32	1499.8 1497.2 1492.9 1491.5 1490.2 1489.0 1488.6 1487.9 1486.8 1489.5 1494.9	0 10 20 30 49 69 98 147 188 277 365	24.54 24.35 24.19 23.85 22.87 21.52 20.20 19.29 18.35 16.82 14.76	35.74 35.74 35.74 35.74 35.72 35.68 35.60 35.60 35.61 35.50 35.33	23.16 24.13 24.28 24.28 24.75 24.89 25.24 25.46 25.46 25.68 25.97 26.30	0.00 0.04 0.08 0.12 0.18 0.25 0.33 0.46 0.56 0.76 0.94	1534.5 1534.3 1534.0 1533.3 1531.2 1527.9 1524.8 1522.9 1520.8 1517.5 1512.3
E427 0 5 10 15 25 38 54 72 88 133	20.98 20.94 20.84 20.40 19.10 18.05 17.60 16.91 16.00 14.15	35.33 35.33 35.39 35.43 35.48 35.48 35.46 35.44 35.44 35.35	24.77 24.78 24.81 24.97 25.34 25.65 25.74 25.89 26.08 26.08	0.00 0.02 0.03 0.05 0.08 0.11 0.15 0.18 0.22 0.30	1525.0 1525.0 1524.7 1523.6 1520.2 1517.4 1516.4 1514.5 1511.9 1506.6	471 564 654 755 842 940 1063 1134 1441 1911 2380	12.49 11.21 9.97 8.44 7.18 6.59 5.79 5.18 3.57 2.65 2.25	35.09 34.96 34.80 34.63 34.49 34.49 34.46 34.47 34.53 34.66 34.66	26.59 26.73 26.83 26.95 27.04 27.10 27.18 27.27 27.48 27.64 27.71	1.12 1.26 1.39 1.52 1.62 1.74 1.87 1.94 2.19 2.50 2.75	1506.3 1503.2 1500.1 1495.8 1492.2 1491.5 1490.2 1489.0 1487.1 1491.1 1497.1
178 210 241	13.59 13.07 12.63	35.30 35.24 35.16	26.52 26.58 26.60	0.37 0.42 0.47	1505.4 1504.2 1503.2	6501 0 9	24.77 24.68	35.64 35.64	23.93 23.95	0.00	1535.0
E428 0 7 16 24 39 54 8 8 238 326 413 504 580 413 504 580 839 930 930 988	22.80 22.74 22.69 21.72 20.00 19.08 17.97 16.12 14.41 13.33 10.28 9.20 8.066 7.47 6.94 6.12 5.65	35.53 35.52 35.52 35.63 35.62 35.62 35.62 35.48 35.35 35.25 35.25 34.761 34.56 35.57 35.57 35.67 35.75 35.75 35.75 35.75 35.75 35.75 35.75 35.75 35.75 35.75 35.75 35.75 35.75 35.75 35.75 34.76 34.76 34.56 35.56	24.42 24.43 24.46 24.73 25.26 25.74 26.39 26.55 26.66 26.70 26.78 26.78 26.97 27.08 27.08 27.08	0.00 0.02 0.06 0.13 0.17 0.25 0.41 0.58 0.69 0.83 0.96 1.07 1.29 1.38 1.54	1529.9 1529.9 1530.0 1523.1 1520.9 1518.1 1513.5 1509.4 1509.4 1502.2 1498.9 1495.8 1492.9 1492.9 1492.1 1491.2 1489.4 1488.4	18 28 47 74 100 150 172 270 348 434 510 598 678 751 842 944 1001 1248 1683 2103	24.42 24.20 23.62 21.98 20.74 19.49 17.86 17.86 17.41 15.62 13.60 11.70 9.95 8.70 7.73 6.25 4.56 2.93 2.47	35.63 35.62 35.64 35.64 35.64 35.64 35.64 35.64 35.64 35.62 35.21 35.00 34.55 34.55 34.46 34.49 34.49 34.64	24.03 24.08 24.08 25.08 25.41 25.92 25.92 25.16 26.16 26.46 26.67 26.83 26.99 26.99 27.06 27.12 27.35 27.58 27.68	0.07 0.11 0.27 0.35 0.49 0.55 0.78 0.96 1.14 1.28 1.42 1.54 1.64 1.75 1.87 1.93 2.18 2.50 2.75	1534.4 1534.4 1534.1 1529.1 1526.2 1523.5 1522.5 1522.5 1520.6 1516.3 1510.7 1505.4 1500.3 1496.6 1492.6 1494.4 1494.4 1494.1 1488.1 1488.5 1493.5
1225 1642 1879	4.42 3.05 2.52	34.49 34.58 34.62	27.57 27.57 27.65	2.03	1487.2 1488.3 1490.0	E202		25 1.9	23.86	0.00	153h k
E499 0 19 24 32 68 75 101 151 204 302 401 498 594	23.32 23.06 23.03 22.29 20.28 19.56 18.50 17.70 16.26 14.32 12.33 10.78	35.68 35.68 35.68 35.65 35.65 35.65 35.61 35.59 35.49 35.30 35.30 35.30 35.09	24.39 24.46 24.46 25.20 25.65 25.65 25.63 26.10 26.38 26.62 26.77	0.00 0.07 0.08 0.11 0.23 0.26 0.33 0.45 0.57 0.78 0.97 1.13 1.28	1531.5 1531.1 1531.2 1531.1 1529.9 1524.5 1522.8 1520.6 1519.2 1516.3 1511.4 1506.1	9 15 20 35 52 74 98 129 195 258 323 386 455 511 578	24.55 24.49 24.35 23.26 22.58 21.08 20.11 19.10 17.86 16.42 14.95 13.43 12.31 11.21 10.11	35.49 35.49 35.71 35.75 35.68 35.63 35.63 35.47 35.47 35.18 35.03 34.80	23.87 23.90 23.96 24.42 24.66 25.02 25.51 25.79 26.04 26.27 26.47 26.58 26.69 26.80	0.04 0.07 0.09 0.14 0.20 0.27 0.34 0.42 0.58 0.72 0.84 0.95 1.06 1.15 1.25	1534.4 1534.4 1534.2 1531.9 1530.4 1526.8 1524.5 1522.0 1519.5 1516.1 1516.1 1512.2 1508.1 1505.2 1502.2 1499.2

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/

Р	Т	S	$\sigma_{ m t}$	ΣΔD	С	Ρ	Ţ	S	σ_t	ΣΔD	С
E502	(cont'd)					<u>E505</u> («	cont'd)				
644 718 759 933 1249 1523	9.12 8.48 7.93 6.51 4.39 3.30	34.67 34.62 34.57 34.47 34.48 34.57	26.87 26.93 26.98 27.09 27.37 27.54	1.33 1.43 1.48 1.68 1.99 2.19	1496.6 1495.4 1493.8 1490.9 1487.5 1487.3	1 423 1 937 2 4 2 4 E <u>5</u> 0 6	3.81 2.54 2.20	34.52 34.62 34.66	27.44 27.64 27.71	1.94 2.29 2.55	1487.8 1491.1 1497.7
E503	5.50	10.71	~7.57		1407.0	0	22.38	35.61	24.59	0.00	1529.0
0 8 17 26 34 46 78 122 136 219 383 459 541 602 681 7859 681 7852 914 1141 1550	23.77 23.71 23.39 22.56 20.54 19.26 18.05 15.04 13.11 12.03 10.85 9.56 8.86 7.96 7.17 6.65 6.22 4.71 3.29	35.63 35.64 35.64 35.64 35.63 35.51 35.57 35.52 35.37 35.20 34.92 34.92 34.92 34.54 34.54 34.54 34.48 34.48	24.22 24.24 24.34 25.58 25.45 25.45 26.27 26.65 26.65 26.65 26.65 26.65 26.99 27.05 27.11 27.14 27.33 27.55	0.00 0.03 0.06 0.09 0.12 0.16 0.25 0.35 0.35 0.55 0.72 0.82 0.93 1.04 1.11 1.21 1.32 1.40 1.48 1.70 2.02	1532.6 1532.7 1532.0 1529.9 1524.7 1521.7 1511.0 1506.0 1503.1 1500.0 1496.6 1494.9 1492.7 1491.2 1491.1 1489.6 1487.0	20 30 49 81 109 166 193 294 496 570 661 756 845 948 1037 1126 1432 1909 2376 E507	21,55 21,03 19,49 18,34 16,83 15,03 14,28 12,65 11,13 10,02 8,95 7,94 7,12 6,52 5,93 5,25 4,72 3,46 2,24	$\begin{array}{c} 35.61\\ 35.59\\ 35.58\\ 35.56\\ 35.56\\ 35.52\\ 35.41\\ 35.35\\ 35.18\\ 34.99\\ 34.68\\ 34.58\\ 34.58\\ 34.49\\ 34.49\\ 34.49\\ 34.49\\ 34.49\\ 34.58\\ 34.59\\ 34.49\\ 34.56\\ 34.66\\ 34$	24.83 24.96 25.37 25.58 25.97 26.30 26.41 26.62 26.82 26.98 27.05 27.10 27.16 27.31 27.49 27.69	0.06 0.10 0.15 0.23 0.29 0.40 0.45 0.61 0.76 0.99 1.11 1.32 1.32 1.43 1.51 1.60 1.84 2.40	1 527.0 1 527.0 1 525.9 1 521.9 1 519.1 1 514.8 1 510.1 1 500.2 1 490.7 1 492.7 1 492.7 1 492.7 1 492.7 1 492.7 1 492.7 1 488.9 1 488.9 1 486.5 1 486.5 1 490.6 1 497.1
2011	2.43	34.64	27.68	2.30	1491.8	0	21.36	35.47	24.78	0.00	1526.1
0 10 21 33 56 72 94 141 188 379 465 648 737 925 546 648 737 925 1036 1379 1876 2352	23.59 23.54 23.50 22.92 21.52 20.12 18.29 17.38 13.77 12.42 10.99 9.41 8.34 7.60 6.76 6.76 6.10 5.62 4.03 2.70 2.26	35.66 35.67 35.67 35.67 35.67 35.62 35.58 35.25 35.25 35.25 35.25 34.74 34.62 34.51 34.51 34.52 34.51 34.52 34.51	24.29 24.31 24.33 24.30 24.30 25.23 25.67 25.86 26.45 26.61 26.76 26.88 26.95 27.01 27.09 27.15 27.21 27.43 27.63	0.00 0.04 0.08 0.12 0.20 0.32 0.44 0.55 0.91 1.05 1.71 1.31 1.42 1.53 1.65 1.77 1.85 2.09 2.43 2.69	1532.2 1532.3 1532.4 1531.3 1522.4 1531.3 1524.4 1519.9 1517.9 1517.9 1513.7 1509.2 1506.0 1502.1 1495.1 1495.1 1491.0 1491.9 1491.9 1491.9 1490.2 1488.1 1490.7 1496.6	10 20 30 50 67 99 142 183 278 372 473 551 651 744 831 936 1056 1056 1056 1056 1122 1413 1909 2380 E508	21. 31 20. 43 20. 17 19. 81 16. 68 15. 59 14. 80 14. 48 13. 62 12. 37 10. 83 9. 61 8. 51 7. 63 7. 14 6. 30 5. 63 5. 15 3. 90 2. 75 2. 23	35.47 35.46 35.46 35.48 35.48 35.49 35.40 35.40 35.40 35.40 35.40 35.40 34.93 34.93 34.93 34.65 34.57 34.57 34.59 34.47 34.51 34.62 34.62 34.62	24.79 25.03 25.09 25.18 25.98 26.22 26.36 26.41 26.56 26.64 26.64 26.77 26.85 26.94 27.01 27.05 27.13 27.21 27.23 27.43 27.63 27.70	0.03 0.09 0.14 0.18 0.25 0.33 0.40 0.55 0.70 0.84 0.95 1.08 1.19 1.29 1.41 1.53 1.60 1.85 2.19 2.45	1526.2 1523.9 1522.5 1513.8 1510.9 1509.0 1508.6 1507.1 1504.3 1500.3 1496.3 1492.4 1491.3 1492.4 1491.2 1488.5 1488.0 1491.4 1497.0
<u>E505</u>						10 20	20.81	35.39	24.87	0.03	1524.7
0 7 17 26 43 69 104 151 185 283 380 480 558 658 758 847 949 2062 1135	22.98 22.96 22.78 22.74 20.75 18.76 17.79 16.65 15.83 13.70 12.11 11.01 9.58 8.24 7.39 6.58 6.00 5.34 4.94	35.61 35.62 35.62 35.63 35.54 35.554 35.52 35.24 35.52 35.24 35.24 35.05 34.76 34.62 34.49 34.49 34.47	24,43 24,44 24,51 25,06 25,55 25,76 26,01 26,14 26,62 26,62 26,66 26,62 26,86 26,96 27,00 27,16 27,16 27,16 27,28	0.00 0.04 0.07 0.10 0.15 0.22 0.31 0.41 0.43 0.65 0.81 0.95 1.06 1.19 1.31 1.41 1.52 1.63 1.70	1530.5 1530.3 1525.3 1525.3 1525.3 1525.0 1517.8 1515.0 1513.0 1507.4 1496.9 1499.2 1488.3 1488.0	30 48 73 98 140 271 355 463 545 612 799 894 996 1052 1294 1739	19.99 18.53 17.57 15.45 14.01 13.48 12.42 11.18 9.86 8.89 8.21 6.89 6.29 5.67 5.34 4.08 2.84	35.40 35.40 35.38 35.37 35.32 35.27 35.14 34.98 34.63 34.63 34.63 34.53 34.50 34.49 34.50 34.49 34.50 34.49	25.09 25.46 25.69 26.18 26.45 26.52 26.63 26.75 26.85 26.91 26.97 27.13 27.25 27.25 27.25 27.26 27.60	0.09 0.14 0.25 0.33 0.40 0.53 0.65 0.80 0.99 1.20 1.30 1.40 1.45 1.66 1.98	1522.8 1518.9 1516.5 1510.3 1506.3 1505.2 1502.9 1499.8 1496.4 1494.2 1492.4 1494.2 1492.4 1490.3 1488.7 1488.7 1488.2 1489.1

Ρ	т	S	σ_t	ΣΔD	С	Р	т	S	$\sigma_{\rm t}$	ΣΔD	С
E <u>509</u>						E <u>5</u> 12 (cont'd)				
0 9 18 27 455 87 139 166 2786 430 494 5883	21.23 20.60 20.13 19.56 18.36 16.65 15.29 14.09 13.75 12.25 11.24 10.37 9.03 8.06 7.50	35.32 35.39 35.42 35.42 35.42 35.42 35.34 35.34 35.34 35.34 35.34 35.11 34.98 34.71 34.63	24.69 24.92 25.06 25.22 25.52 26.45 26.45 26.45 26.48 26.73 26.80 26.90 26.90 26.90	0.00 0.03 0.06 0.08 0.13 0.17 0.22 0.31 0.35 0.51 0.68 0.74 0.82 0.94	1525.9 1524.1 1523.0 1521.4 1518.3 1513.5 1509.7 1506.5 1502.2 1500.5 1490.5 1490.5	262 356 445 515 609 776 874 982 1069 1308 1771 2222	14.06 12.37 10.58 9.57 8.54 7.45 6.97 6.44 5.63 5.11 3.91 2.81 2.31	35.28 35.09 34.86 34.65 34.55 34.55 34.55 34.48 34.47 34.49 34.59 34.58 34.58	26.44 26.66 26.77 26.85 26.93 27.03 27.07 27.10 27.20 27.20 27.26 27.41 27.58 27.67	0.58 0.73 0.86 0.95 1.07 1.18 1.27 1.38 1.49 1.58 1.78 2.11 2.38	1508.3 1504.0 1496.9 1496.9 1490.9 1490.9 1490.9 1490.3 1489.8 1488.2 1487.3 1486.4 1489.3 1494.7
750 831 1091 1510 1955	6.81 6.28 4.72 3.44 2.58	34.53 34.49 34.48 34.56 34.61	27.10 27.13 27.31 27.51 27.63	1.12 1.21 1.46 1.79 2.06	1489.3 1488.5 1486.3 1487.9 1491.6	0 7 13 19	25.07 25.05 25.00 24.11	35.55 35.56 35.56 35.68	23.76 23.89 23.90 24.14	0.00 0.03 0.05 0.08	1535.7 1535.8 1535.7 1533.7
E510 0 8 16 24 38 64 113 151 183 285 387 479 600 666 763 848 953 1055	23.94 23.83 23.50 23.39 22.84 19.92 18.40 16.73 15.90 13.76 12.20 10.66 8.96 8.26 7.32 6.75 6.14 5.35	35.67 35.68 35.68 35.68 35.62 35.52 35.55 35.45 35.26 35.45 35.210 34.70 34.56 34.51 34.55	24.19 24.22 24.32 24.36 25.28 25.63 25.98 26.14 26.46 26.46 26.64 26.78 26.97 27.04 27.12 27.17 27.26	0.00 0.03 0.06 0.23 0.36 0.51 0.69 0.51 0.69 0.51 1.23 1.23 1.34 1.34 1.55 1.65	1533.1 1532.9 1532.2 1532.1 1530.9 1523.3 1519.7 1515.2 1512.9 1507.7 1507.7 1507.7 1507.7 1507.7 1509.7 1499.7 1499.7 1499.5 1499.5 1499.5 1499.5 1499.6 1489.8 1488.4	40 65 97 129 201 273 393 455 555 555 620 684 738 804 1041 1391 1683 <u>E514</u>	23.14 21.62 18.83 18.02 17.46 16.39 14.96 14.96 14.02 13.07 11.89 10.30 9.22 8.20 7.37 6.78 4.82 3.37 2.77	35.70 35.69 35.62 35.62 35.49 35.37 35.27 35.14 35.01 34.84 34.51 34.54 34.54 34.54 34.60	24.44 24.87 25.57 25.75 25.88 26.28 26.40 26.64 26.79 26.64 26.95 27.03 27.08 27.29 27.51 27.61	0.13 0.15 0.22 0.30 0.37 0.52 0.66 0.76 0.86 0.96 1.11 1.28 1.34 1.42 1.66 1.93 2.12	1531.5 1520.2 1520.2 1518.5 1517.1 1515.0 1511.4 1509.3 1507.0 1503.8 1499.6 1499.6 1493.7 1491.2 1490.2 1495.8 1485.8 1485.8
1135 1418 1939 2414 E511	4.93 3.53 2.54 2.20	34.51 34.55 34.62 34.65	27.31 27.49 27.64 27.70	1.72 1.94 2.29 2.54	1487.9 1486.6 1491.1 1497.5	0 6 12 19 34	25.86 25.83 25.79 25.54 25.00	35.55 35.56 35.56 35.58 35.60	23.52 23.53 23.54 23.64 23.82	0.00 0.03 0.05 0.08 0.15	1537.6 1537.6 1537.7 1537.2 1536.0
0 5 10 15 28 41 70 187 241 310 374 438 624 723 869 936	23.72 23.55 23.33 22.88 22.02 20.33 19.72 17.55 17.16 16.64 15.85 14.40 10.19 8.81 7.31 6.81 7.31 6.81	35.63 35.69 35.69 35.70 35.70 35.70 35.56 35.56 35.56 35.56 35.56 35.32 34.86 34.54 34.58 34.58	24.23 24.27 24.39 24.51 24.76 25.24 25.39 25.97 26.04 26.04 26.63 26.83 26.94 27.11 27.37	0.00 0.02 0.04 0.05 0.10 0.14 0.21 0.62 0.77 0.90 1.02 1.31 1.44 1.62 1.69 2.12	1532.5 1532.1 1531.7 1530.6 1524.3 1522.9 1518.1 1517.6 1516.2 1512.3 1500.5 1496.0 1493.0 1492.2 1489.5	48 60 89 118 258 314 375 448 496 557 620 706 751 918 1112 1317 E515	24.51 22.21 21.69 20.49 18.45 17.23 16.46 15.24 13.90 12.10 10.54 9.53 8.38 7.62 6.04 4.98 3.81	35.62 35.65 35.65 35.65 35.51 35.23 35.23 35.23 35.23 34.72 34.60 34.457 34.451 34.51	23.98 24.71 24.82 25.15 25.64 25.87 26.00 26.28 26.41 26.63 26.41 26.75 26.84 26.93 26.97 27.13 27.28 27.44	$\begin{array}{c} 0.20\\ 0.25\\ 0.34\\ 0.43\\ 0.61\\ 0.78\\ 0.90\\ 1.02\\ 1.16\\ 1.24\\ 1.33\\ 1.41\\ 1.53\\ 1.58\\ 1.77\\ 1.96\\ 2.14 \end{array}$	$\begin{array}{c} 1535.1\\ 1528.5\\ 1528.5\\ 1528.9\\ 1521.1\\ 1518.4\\ 1517.0\\ 1517.0\\ 1517.0\\ 1510.7\\ 1505.3\\ 1500.5\\ 1497.7\\ 1494.7\\ 1494.7\\ 1494.8\\ 1487.7\\ 1488.8\\ 1487.7\\ 1486.1\\ \end{array}$
E512 0 8 16 24 39 61 103 135 167	24.34 23.71 23.40 22.43 20.64 18.15 17.35 16.39 15.53	34.57 35.60 35.61 35.61 35.57 35.57 35.49 35.41	24.02 24.21 24.31 24.58 25.06 25.69 25.89 26.11 26.18	0.00 0.03 0.06 0.09 0.14 0.19 0.29 0.35 0.41	1489.5 1489.5 1532.4 1532.4 1531.9 1529.5 1524.9 1518.2 1516.4 1511.0	0 10 20 30 50 67 105 157 197 295 389 504	25.73 25.68 25.59 24.85 23.15 21.40 19.84 18.37 17.79 16.47 14.64 12.40	35.60 35.61 35.62 35.66 35.73 35.65 35.62 35.59 35.48 35.29 35.04	23.59 23.62 23.65 23.91 24.47 24.94 25.33 25.67 25.80 26.02 26.29 26.57	0.00 0.04 0.09 0.13 0.20 0.26 0.37 0.50 0.59 0.59 0.81 0.99 1.19	1537.3 1537.4 1537.3 1535.8 1531.8 1527.5 1523.8 1520.4 1516.8 1512.3 1506.5

Ρ	Т	S	σ_{t}	ΣΔD	С	Ρ	Т	S	σ_t	Σ4D	С
<u>E515</u>	(cont'd)					E <u>5</u> 18 (0	cont'd)				
582 689 783 878 983 1107 1171 1464 1987 2477	10.81 9.04 7.92 6.82 6.08 5.20 4.66 3.49 2.49 2.49	34.87 34.71 34.59 34.50 34.46 34.45 3 ¹ .46 34.54 34.62 24.66	26.73 26.90 26.98 27.07 27.14 27.23 27.31 27.49 27.65	1.31 1.46 1.58 1.69 1.80 1.93 1.99 2.23 2.56 2.83	1501.8 1497.0 1494.2 1491.3 1490.0 1487.4 1487.2 1487.3 1491.6 1498.2	900 1002 1112 1185 1489 2002 2500 E <u>5</u> 19	6.88 6.37 5.67 5.17 3.85 2.59 2.22	34.52 34.49 34.48 34.48 34.52 34.61 34.64	27.08 27.12 27.20 27.26 27.44 27.63 27.68	1.56 1.67 1.79 1.86 2.13 2.49 2.77	1492.0 1491.6 1490.6 1489.6 1489.1 1492.3 1499.0
E516	4.14	94.00	21.11	4.00	1490.2	0	23.15	35.49	24.29	0.00	1530.8
0 5 10 16 28 48 74 117 149 191 254 306 382 448 513 572	25.33 25.33 25.29 25.28 24.66 22.39 21.43 20.01 18.96 17.67 16.65 15.95 14.49 13.23 11.95 10.76	35.57 35.58 35.58 35.63 35.65 35.65 35.65 35.65 35.62 35.60 35.50 35.43 35.43 35.12 35.18 35.03 34.89	23.70 23.71 23.72 23.94 24.64 24.89 25.25 25.83 26.00 26.16 26.55	0.00 0.02 0.04 0.07 0.12 0.19 0.27 0.40 0.48 0.72 0.48 0.72 0.83 0.97 1.08 1.19 1.28	1536.3 1536.4 1536.5 1535.2 1529.9 1527.7 1524.4 1521.9 1516.9 1516.7 1515.2 1511.7 1508.2 1504.9 1504.9	10 15 22 39 55 152 276 372 446 550 605 685 790 898 898 1144 1648	22.40 21.81 21.07 20.71 19.90 16.36 15.30 14.00 12.75 10.66 9.91 9.00 7.87 6.51 4.95 3.07	35.51 35.51 35.51 35.50 35.49 35.40 35.37 35.31 35.10 35.03 34.90 34.83 34.73 34.60 34.73 34.53 34.55	24.52 24.68 24.97 25.18 26.00 26.26 26.44 26.54 26.54 26.57 26.86 26.93 27.00 27.13 27.57	0.04 0.05 0.07 0.13 0.17 0.41 0.46 0.63 0.79 0.90 1.05 1.13 1.23 1.36 1.49 1.73 2.12	1529.1 1527.3 1525.8 1524.9 1523.0 1511.1 1508.4 1505.6 1503.5 1500.9 1499.0 1496.9 1496.9 1494.1 1488.1
643 722	9.80 9.06	34.78	26.83 26.91	1.38 1.48	1499.1 1497.5	2038	2.51	34.62	27.64	2.35	1492.4
780 958 1304	8.53 6.77 4.36	34.66 34.53 34.50	26.95 27.10 27.27 27.56	1.56 1.77 2.12 2.40	1496.5 1492.4 1488.3	E <u>5</u> 20 0	20.72	35.40	24.89	0.00	1524.3
E517	9.00	JJC	21.90		1,0010	22 34	18.11	35.37	25.54	0.06	1517.2
0 10 21 32 56 76 76 76 76 76 696 696 696 696 690 890 989 1090 1174 1473	24.73 23.83 23.17 21.91 19.03 17.73 17.27 15.98 14.72 13.24 11.91 10.34 9.17 8.52 7.68 6.60 5.78 5.13 4.68 3.43	35.63 35.60 35.60 35.57 35.55 35.54 35.46 35.35 35.46 35.35 35.46 35.45 35.44 34.72 34.66 34.55 34.44 34.45 34.45	23.92 24.16 24.36 24.72 25.47 25.78 26.12 26.51 26.66 26.89 26.95 27.01 27.10 27.10 27.23 27.21 27.50	0.00 0.08 0.12 0.19 0.23 0.31 0.42 0.67 0.82 0.67 0.82 0.67 1.12 1.21 1.21 1.21 1.55 1.65 1.73 1.97	1534.9 1532.9 1531.3 1528.2 1520.6 1517.1 1516.3 1513.2 1509.6 1506.3 1503.1 1490.7 1496.4 1495.1 1490.7 1488.9 1487.9 1487.5 1487.5	56 72 109 160 203 308 413 509 600 705 810 911 1011 1131 1210 1493 1786 F <u>5</u> 21 0	16.72 16.28 15.63 14.89 13.71 12.47 11.32 9.93 8.96 8.96 5.22 6.56 5.89 5.25 4.80 3.57 2.67	35.35 35.35 35.35 35.35 35.34 35.25 35.11 34.98 34.80 34.70 34.62 34.55 34.55 34.49 34.49 34.49 34.55 34.60	25.87 25.98 26.12 26.28 26.46 26.60 26.72 26.83 26.91 26.98 27.06 27.12 27.26 27.37 27.49 27.61	0.15 0.20 0.31 0.41 0.48 0.65 0.80 0.94 1.06 1.19 1.32 1.43 1.54 1.66 1.73 1.95 2.17	1513.6 1512.5 1511.0 1509.6 1506.1 1503.5 1501.1 1497.5 1493.4 1493.4 1491.9 1490.8 1489.8 1489.8 1489.1 1488.6 1488.1 1489.1
1949 2392	2.46	34.61	27.64	2.51	1496.8	9 18	23.10 22.75	35.72 35.71	24.53	0.03 0.07	1531.0 1530.3
E <u>5</u> 18 0 10 20 57 71 131 171 201 302 403 506 589 701 796	23.96 23.05 22.73 21.28 20.15 19.30 18.04 17.21 16.71 14.78 13.37 11.86 10.01 9.04 7.99	25.66 35.66 35.64 35.64 35.60 35.57 35.55 35.55 35.23 35.23 35.06 34.81 34.71 34.60	24.18 24.44 24.54 24.93 25.42 25.72 25.89 26.00 26.31 26.69 26.82 26.90 26.98	0.00 0.04 0.07 0.10 0.18 0.22 0.37 0.46 0.52 0.72 0.89 1.05 1.17 1.32 1.44	1533.1 1531.0 1530.2 1526.6 1523.7 1521.6 1518.9 1517.0 1515.9 1511.4 1508.3 1504.7 1499.0 1497.2 1494.6	27 48 74 98 156 192 293 393 491 582 681 775 866 965 1079 1169 1425 2372	$\begin{array}{c} 22.17\\ 20.15\\ 18.27\\ 16.77\\ 16.13\\ 15.55\\ 15.05\\ 13.52\\ 12.20\\ 10.84\\ 9.30\\ 8.25\\ 7.52\\ 6.91\\ 6.16\\ 5.59\\ 4.04\\ 2.66\\ 2.18\end{array}$	35.70 35.65 35.61 35.57 35.57 35.54 35.47 35.25 34.73 34.73 34.52 34.56 34.56 34.52 34.47 34.52 34.47 34.52 34.52 34.52 34.63 34.52 34.63 34.52 34.63 34.52 34.63 34.52 34.63 34.52 34.63 34.52 34.63 34.52 34.63 34.52 34.63 34.52 34.63 34.52 34.63 34.52 34.63 34.52 34.52 34.52 34.63 34.52 34.63 34.52 34.63 34.52 34.63 34.52 34.63 34.52 34.63 34.52 34.63 34.52 34.63 34.52 34.63 34.52 34.63 34.52 34.63 34.52 34.63 34.52 34.63 34.52 34.63 34.52 34.63 34.52 34.63 34.52 34.63 3	24.72 25.24 25.70 26.03 26.15 26.26 26.34 26.55 26.62 26.75 26.62 26.75 26.88 26.97 27.02 27.02 27.02 27.02 27.20 27.42 27.63 27.70	$\begin{array}{c} 0.10\\ 0.16\\ 0.23\\ 0.28\\ 0.40\\ 0.65\\ 0.82\\ 0.97\\ 1.11\\ 1.25\\ 1.37\\ 1.48\\ 1.60\\ 1.72\\ 1.82\\ 2.05\\ 2.40\\ 2.64 \end{array}$	1529.0 1523.8 1518.8 1514.7 1513.6 1512.3 1512.3 1508.7 1502.0 1498.0 1498.0 1494.0 1493.5 1491.9 1491.1 1489.0 1491.3 1496.7

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/

HYDROLOGY OF THE NORTH-EAST TASMAN SEA

by

D. M. GARNER

New Zealand Oceanographic Institute

ABSTRACT

The distribution of ocean temperature and salinity in the north-east Tasman Sea, west of North Island, New Zealand, is described. Based on these data, calculations are made of the geostrophic circulation and of the velocity of sound in this region. This study was the fifth of a series of block surveys of oceanic hydrology in the New Zealand region.

INTRODUCTION

During March 1967 the fifth contribution to a series of studies on the summer distribution of temperature and salinity in ocean waters around New Zealand covered a block in the north-east Tasman Sea to the west of North Island, between latitudes 35° 30' S and 39° 30' S, and between longitudes 164° 30' E and 172° 30' E. Earlier work in this series has been reported by Garner (1967a, b) and by Ridgway (in press) and Garner (in this volume). The grid of 21 stations worked extended from the south-eastern end of the New Caledonia Basin, across the Lord Howe Rise, to the north-eastern margin of the Tasman Basin. The configurations of bottom topography and station positions are shown in Fig. 1. The bathythermograph and reversing bottles with thermometers were used to define temperature and salinity of ocean waters as a function of pressure over the survey area. Methods of working followed those described in earlier reports of this series of studies.

PRESENTATION OF DATA

Positions and times of stations are listed in Table 1 together with meteorological information. Observed station depth/temperature/salinity data are listed in the Appendix together with derived values of density, geopotential anomaly, and sound velocity computed according to relations given by LaFond (1951) and Wilson (1960). Tracings of bathythermograph records are set out in Fig. 6.

Station	N.Z. D Marc	ate/Time ch 1967	AirTemp	W	ind	Latitude	Longitude	
No.	Start	Finish	(°C)	Dirn. (*T)	Speed (kt)	S	E	
F 799 F 800 F 801 F 802 F 803 F 804 F 805 F 806 F 807 F 806 F 807 F 808 F 809 F 810 F 811 F 812 F 813 F 813 F 814 F 815 F 816 F 817 F 818 F 819	3/0118 3/1242 3/2258 4/0800 4/1745 5/0444 5/1205 5/2104 6/0618 6/1736 7/1532 8/0638 8/1550 9/0211 9/1424 9/2352 10/1030 10/2143 11/0715 11/1616 12/0818	3/0438 3/1450 4/0112 4/0920 4/1904 5/0544 5/1355 5/2253 6/0747 6/1937 7/1723 8/0817 8/1746 9/0330 9/1605 10/1236 11/0057 11/0904 11/1754 12/1040	$\begin{array}{c} 15.7\\ 17.2\\ 16.0\\ 17.5\\ 18.7\\ 19.2\\ 20.1\\ 18.0\\ 18.9\\ 19.9\\ 21.5\\ 20.5\\ 20.5\\ 20.3\\ 20.1\\ 20.4\\ 20.0\\ 20.6\\ 21.2\\ 20.7\\ 20.0\\ 17.0\\ \end{array}$	$\begin{array}{c} 110\\ 080\\ 080\\ 040\\ 020\\ 045\\ 200\\ 140\\ 080\\ 050\\ 040\\ 040\\ 050\\ 020\\ 030\\ 020\\ 030\\ 350\\ 280\\ 170\\ \end{array}$	5 7 10 11 17 13 7 8 15 15 15 15 10 9 10 10 16 10 15 25	38° 30' 39° 30' 39° 30' 39° 20' 38° 20' 38° 20' 38° 20' 38° 30' 37° 30' 36° 30' 35° 30' 36° 30' 35° 30'	$\begin{array}{c} 165^{\circ} \ 00'\\ 164^{\circ} \ 30'\\ 165^{\circ} \ 50'\\ 167^{\circ} \ 00'\\ 168^{\circ} \ 15'\\ 168^{\circ} \ 50'\\ 167^{\circ} \ 31'\\ 166^{\circ} \ 10'\\ 165^{\circ} \ 40'\\ 166^{\circ} \ 30'\\ 167^{\circ} \ 30'\\ 169^{\circ} \ 30'\\ 169^{\circ} \ 30'\\ 167^{\circ} \ 50'\\ 169^{\circ} \ 30'\\ 170^{\circ} \ 40'\\ 170^{\circ} \ 40'\\ 172^{\circ} \ 10'\\ 171^{\circ} \ 20'\\ 171^{\circ} \ 30'\\ 171^{\circ} \ 30'\end{array}$	

TABLE 1. Station Circumstances Air (screen) temperature and wind were estimated at bridge level. ----

.

FIG. 1. The survey area showing station positions, ship's track, and isobaths (m) of the sea floor.

FIG. 2. Sea surface isotherms (°c).

FIG. 3. Sea surface isohalines ($\%_0$). Crosses mark positions of water samples taken in addition to those at the stations marked by dots.

FIG. 4. Vertical cross section of temperature (°c) across Lord Howe Rise in the west of the survey area.

Fig. 5. Vertical cross section of salinity (%) corresponding to the temperature section of Fig. 4.

FIG. 6. Bathythermograph traces.

FIG. 7. Salinity at the core of the Antarctic Intermediate Water.

DISCUSSION

From the results of hydrological surveys northwest of New Zealand and in the south-east Tasman Sea (Garner, this volume; 1967b) it was apparent that rather small horizontal variations of water properties would be found over the present survey area in the north-east Tasman Sea. Very little structure is, in fact, revealed in the hydrological distributions mapped by this work, but the completion of this block provides a systematic description of the summer oceanic hydrology of a region extending some 300 miles westwards from New Zealand between latitudes 27° S and 48° S, within the limitations imposed by the use of data taken in different years. Present knowledge of the geopotential topography of the ocean surface in this area with respect to the 1,000 decibar isobaric surface has been summarised elsewhere (Garner, 1969b) from the data from this series of surveys. The present discussion is confined to a description of the hydrological characteristics of the north-east Tasman block.

SURFACE TEMPERATURE AND SALINITY

Figs. 2 and 3 provide, respectively, a description of the temperature and salinity of the sea surface over the survey area. Surface isotherms ran nearly east-west with a small and nearly constant meridional temperature gradient. The trend of isotherms between the survey area and the west coast of North Island has been estimated in Fig. 2 using a thermograph record obtained along the coast from m.v. *Taranui* just before working the survey block (Garner, 1969). No simple correlation between surface temperature and salinity was apparent. Isohalines were approximately zonally oriented in the west of the survey block but had a more north-south trend in the

FIG. 8. Geopotential topography of the sea surface estimated with respect to (a) 1,000 decibars (heavy black) and (b) 500 decibars (light black) in dynamic metres. Contours are also streamlines of the relative surface geostrophic circulation in the sense of the arrows.

east. Measurements along *Taranui's* coastal passage showed that surface salinity continued to fall between the survey block and the shelf but contained so much detail due to coastal fresh water run-off that the isohalines in Fig. 3 could not readily be continued eastwards.

SUBSURFACE TEMPERATURE AND SALINITY

Figs. 4 and 5 show isotherms and isohalines, respectively, in vertical cross section along the westernmost line of stations in the survey area. An isothermal upper mixed layer about 50 m deep covered the area. The bathythermograph traces of Fig. 6 show that the lower boundary of this layer was well defined. A discontinuity in vertical temperature gradient occurred at the top of the thermocline layer at all stations except for the group F 803, F 804, and F 805 over the eastern end of the Lord Howe Rise. Salinity in the upper mixed layer tended to increase slightly with depth to reach a weak maximum

near the top of the thermocline. Little isoline structure of note appeared below the thermocline. The only significant isotherm slopes in the section of Fig. 4 were found at intermediate depths between stations F 799 and F 800 in the south, and between depths of 200 and 700 m in the north from station F 808 to F 809. The latter feature was associated with the only significant geopotential slope found in the survey area. At most stations of the survey a region of relatively weak vertical temperature gradient was found below the summer thermocline layer. In the temperature cross section of Fig. 4 this region was found at a depth of some 200 m at all stations except F 808. Below this region lay the top of the main thermocline layer, at about 300 m, which coincided with the top of the main halocline, the vertical salinity gradient being rather weak between this depth and the surface. This double thermocline structure was also characteristic of

many stations in the adjacent south-east Tasman and north-west survey blocks. Below the deep thermocline the temperature fell, with a steadily decreasing gradient, to reach 2°c at a depth of about 2 km. Below the halocline, salinity decreased with increasing depth to reach a minimum of about 34.5% at a depth of some 900 m in the core of the Antarctic Intermediate Water. Salinity in this core layer tended to increase where it approached close to the sea floor (Fig. 7), probably owing to an increase in turbulent vertical mixing, as has been noted for the other survey areas around New Zealand. Beneath the Antarctic Intermediate core, salinity increased slowly to reach some 34.7‰ at a depth of 2 km. No significant difference in the salinity of this Deep Water at a given temperature each side of the Lord Howe Rise was evident (Wyrtki, 1961).

TABLE 2. Mean Vertical Sounding Velocity and Echo Sounding Corrections for station F 800 compared with data for Matthews' (1939) Area No. 42

	F 8	00	Area 42			
Depth (m)	MSV (m/sec)	Corrn. (m)	MSV (m/sec)	Corrn (m)		
200 400 600 800 1,000 1,200 1,400 1,600 1,800 2,000	1,509.2 1,504.6 1,500.8 1,497.8 1,495.2 1,493.2 1,491.9 1,490.9 1,490.6 1,490.4	$\begin{array}{r} + 1.2 \\ + 1.2 \\ + 0.3 \\ - 1.1 \\ - 3.1 \\ - 5.4 \\ - 7.7 \\ - 9.6 \\ -11.3 \\ -12.8 \end{array}$	1,504 1,499 1,496 1,493 1,492 1,491 1,490 1,490 1,490 1,490 1,489	+ 1 - 2 - 4 - 5 - 7 - 9 - 11 - 12 - 14		

FIG. 9. Vertical cross section of sound velocity (m/sec) across the Lord Howe Rise corresponding to the hydrological sections of Figs. 4 and 5.

DYNAMICS

In terms of the relative geopotential slope of the sea surface (Fig. 8) the dynamical structure of the survey block was very weak indeed. Geostrophic flow was generally from the west with an indication of increasing velocities in the north of the area. This is close to the southern edge of the relatively strong flow of water (defined by the north-west survey) from the East Australian Current running eastwards to the north of New Zealand.

SOUND VELOCITY

In the vertical section of sound velocity (Fig. 9) a weak subsurface maximum was defined at a depth of about 30 m. Below this, velocity decreased with increasing depth to form the minimum of the SOFAR channel at a depth of 1.3 to 1.4 km.

No great differences were found between mean vertical sounding velocities calculated from the survey data and those estimated for the region by Matthews (1939). A comparison of the two sets of figures is presented in Table 2 for station F 800, which provided data from the greatest depth reached by this survey.

ACKNOWLEDGMENTS

The writer is grateful for the assistance of K. B. Lewis, W. Main, R. J. Singleton, and B. R. Stanton, all of the N.Z. Oceanographic Institute, with the field work, and for the willing co-operation of the crew of m.v. *Taranui* under Captain D. K. Matheson. Computing facilities were provided by the Applied Mathematics Division of the DSIR, Wellington. Figures for each of the cruise reports of this hydrological survey series were prepared for publication by the Cartographic Section of DSIR.

REFERENCES

- GARNER, D. M. 1967a: Hydrology of the Southern Hikurangi Trench Region. Bull. N.Z. Dep. scient. ind. Res. 177.
- 1967b: Hydrology of the South-east Tasman Sea. Bull. N.Z. Dep. scient. ind. Res. 181.

- LAFOND, E. C. 1951: Processing Oceanographic Data. Publs U.S. hydrogr. Off. 614.
- MATTHEWS, D. J. 1939: Tables of the Velocity of Sound in Pure Water and Sea Water for use in Echo Sounding and Sound Ranging. *Publs Admiralty hydrogr. Dep.* 282: 1-151.
- RIDGWAY, N. M. (in press): Hydrology of the Southern Kermadec Trench Region. Bull. N.Z. Dep. scient. ind. Res.
- WILSON, W. D. 1960: Speed of Sound in Sea Water as a Function of Temperature, Pressure and Salinity. J. acoust. Soc. Am. 32 (6): 641-4.
- WYRTKI, K. 1961: The Flow of Water into the Deep Sea Basins of the Western South Pacific Ocean. Aust. J. mar. Freshwat. Res. 12 (1): 1-16.

APPENDIX

NUMERICAL STATION DATA

- Ρ is the sampling pressure in decibars. This is numerically nearly equal to the geometric depths in metres. A more accurate conversion using representative mean density figures (LaFond, 1951, p. 8) is as follows: pressure (decibars): 200 400 600 800 1000 1500 2000 2500 199 398 595 793 991 1484 1976 2467 depth (metres):
- Т is the sample temperature in $^{\circ}C \times 100$.

- is the *in situ* density \times 100. $\sigma_{\rm stp}$

The " σ " value is derived from the specific gravity, ρ , from the relation $\sigma = (\rho - 1) \times 10^{5}.$

- $\Sigma \Delta D$ is the anomaly of the geopotential distance from the sea surface to the sample depth, in dynamic metres \times 100.
 - C is the *in situ* sound velocity in m/sec \times 10.
 - C_m is the harmonic mean sound velocity between the sea surface and the sample depth, in m/sec \times 10.
 - is the correction, in metres, to be applied to an echo sounding of a depth Κ corresponding to the depth D on a machine calibrated for a velocity of $1,500 \text{ m/sec} \times 10.$

Ρ	т	S	σ_{t}	$\sigma_{\rm stp}$	ΣΔD	С	Cm	К
F 799								
$\begin{array}{c} 0\\ 10\\ 20\\ 30\\ 40\\ 65\\ 85\\ 130\\ 170\\ 264\\ 315\\ 368\\ 415\\ 469\\ 550\\ 634\\ 700\\ 780\\ 855\\ 1095 \end{array}$	1829 1829 1829 1758 1555 1477 1408 1352 1259 1182 1073 980 894 817 760 703 626 582 431	3545 3545 3545 3541 3539 3538 3534 3529 3518 3508 3492 3492 3468 3460 3454 3451 3448 3447 3455	2556 2556 2556 2571 2617 2633 2645 2653 2663 2670 2678 2684 2690 2695 2699 2705 2713 2718 2742	2556 2561 2565 2570 2588 2646 2671 2703 2729 2781 2812 2844 2871 2902 2945 2945 2987 3023 3068 3107 3243	0 2 5 7 10 15 19 26 32 47 54 62 68 75 85 95 103 112 120 142	$\begin{array}{c} 15179\\ 15180\\ 15182\\ 15183\\ 15164\\ 15107\\ 15086\\ 15069\\ 15057\\ 15040\\ 15020\\ 14990\\ 149961\\ 14937\\ 14920\\ 14912\\ 14899\\ 14882\\ 14876\\ 14855 \end{array}$	15179 15179 15180 15181 15162 15162 15147 15123 15109 15087 15078 15067 15057 15044 15027 15012 15012 15012 14991 14981 14955	0 1 2 4 5 7 8 11 12 15 16 17 16 14 10 5 1 1- 33-
F 800								
$\begin{array}{c} 0\\ 10\\ 20\\ 30\\ 53\\ 80\\ 100\\ 150\\ 200\\ 305\\ 360\\ 419\\ 490\\ 569\\ 649\\ 734\\ 798\\ 851\\ 915\\ 1112\\ 1500\\ 1993 \end{array}$	1813 1813 1809 1706 1483 1398 1337 1283 1151 1030 949 871 808 740 663 593 529 476 367 265 210	3532 3532 3532 3539 3537 3533 3527 3521 3503 3486 3474 3463 3474 3463 3452 3448 3445 3445 3445 3445 3445 3469	2550 2550 2551 2631 2646 2654 2661 2672 2681 2685 2689 2694 2701 2708 2701 2708 2716 2723 2729 2746 2764 2774	2550 2555 2665 2667 2691 2722 2750 2809 2843 2875 2911 2952 2995 3042 3079 3112 3148 3256 3452 3684	0 2 5 7 13 18 22 29 37 52 60 67 77 86 96 106 113 118 124 141 168 197	$15172 \\ 15174 \\ 15176 \\ 15176 \\ 15150 \\ 15086 \\ 15061 \\ 15048 \\ 15037 \\ 15007 \\ 14972 \\ 14970 \\ 14972 \\ 14950 \\ 14919 \\ 14919 \\ 14854 \\ 14854 \\ 14854 \\ 14853 \\ 14912 \\ 14912 \\ 14912 \\ 14912 \\ 1517$	15172 15173 15174 15175 15170 15152 15136 15092 15068 15043 15043 15028 15014 15001 14989 14980 14973 14964 14915 14907	0 1 2 3 6 8 9 11 12 14 13 12 14 13 12 9 5 0 5- 11- 15- 22- 44- 85- 123-
F 801 0 7 17 22 47 76 100 150 190 300 362 407 460 534 605 719	1769 1769 1766 1713 1506 1477 1346 1299 1192 1101 1005 922 844 782 700	3539 3539 3539 3537 3533 3533 3528 3522 3508 3496 3481 3470 3461 3456 3450	2566 2566 2567 2579 2623 2653 2658 2669 2676 2681 2681 2687 2692 2698 2698 2705	2566 2570 2574 2577 2599 2657 2674 2721 2743 2803 2803 2839 2865 2895 2895 2895 2895 2895 2934 2972 3031	0 2 4 5 11 17 21 29 35 52 60 67 74 83 92 105	15161 15162 15164 15152 15093 15087 15051 15041 15022 14999 14970 14946 14929 14916 14901	15161 15162 15162 15160 15145 15132 15111 15097 15073 15062 15054 15028 15016 14998	0 1 2 5 7 9 11 12 15 15 15 13 10 6 1-

Р	Т	S	σ_{t}	$\sigma_{ m stp}$	ΣΔΟ	С	C_{m}	К
F 801 cont.								
815 865 903 1228 1592 1978	639 555 502 359 262 220	3447 3445 3445 3452 3464 3471	2710 2720 2726 2747 2765 2774	3081 3114 3139 3310 3495 3677	116 121 125 153 178 201	14892 14866 14851 14846 14866 14915	14986 14980 14975 14941 14922 14916	7- 11- 15- 48- 83- 111-
F 802								
0 10 20 30 50 75 100 150 225 331 395 470 528 589 686 793 854 916 980 1147	1725 1713 1702 1699 1678 1497 1420 1337 1283 1169 1059 943 852 780 696 631 566 480 385 323	3526 3523 3521 3524 3534 3533 3527 3520 3504 3489 3471 3462 3456 3451 3445 3445 3445 3445 3450 3457	2567 2568 2569 2570 2577 2626 2642 2654 2660 2670 2678 2698 2698 2706 2712 2718 2728 2743 2754	2567 2572 2578 2583 2599 2659 2686 2722 2761 2818 2856 2896 2931 2965 3018 3072 3108 3148 3193 3282	0 2 5 7 12 17 21 29 40 56 65 75 82 90 101 113 120 126 131 143	$15146 \\ 15142 \\ 15142 \\ 15142 \\ 15140 \\ 15090 \\ 15068 \\ 15042 \\ 15019 \\ 14988 \\ 14956 \\ 14930 \\ 14912 \\ 14894 \\ 14886 \\ 14869 \\ 14845 \\ 14816 \\ 14818 \\ 1481$	15146 15145 15144 15143 15142 15133 15120 15099 15081 15065 15041 15019 15019 15019 15019 15019 14987 14979 14971 14962 14941	0 1 2 3 5 7 8 10 12 14 14 13 11 8 1 7- 12- 18- 25- 45-
F 803								
0 10 26 50 77 97 143 173 254 315 351 427	1799 1769 1794 1793 1782 1721 1629 1441 1388 1328 1264 1151 1043	3536 3536 3537 3537 3534 3530 3529 3525 3517 3502 3489	2557 2564 2558 2559 2562 2574 2635 2645 2645 2645 2655 2661 2672 2681	2557 2569 2565 2571 2584 2608 2637 2699 2723 2768 2802 2829 2829 2873	0 2 4 12 18 23 32 37 50 59 64 75	15169 15162 15171 15172 15172 15134 15083 15070 15063 15063 15050 15015 14988	15169 15165 15168 15170 15168 15164 15146 15134 15146 15134 15112 15101 15094 15078	0 1 2 3 6 9 11 14 15 19 21 22 22
F 804								
0 10 18 23 51 75 100 162 212 306 392 500	1810 1809 1811 1808 1650 1451 1355 1322 1232 1128 1064	3534 3534 3533 3533 3530 3529 3528 3528 3524 3513 3499 3492	2553 2552 2552 2552 2588 2632 2652 2655 2665 2665 2665 2674 2680	2553 2557 2560 2562 2575 2621 2677 2724 2720 2802 2802 2849 2904	0 2 4 6 13 18 23 33 41 55 68 83	15172 15173 15175 15174 15179 15137 15078 15058 15054 15037 15013 15007	15172 15173 15173 15174 15175 15170 15154 15121 15105 15087 15073 15060	0 1 2 3 6 8 10 13 15 18 19 20

P	т	S	σ_{t}	$\sigma_{ m stp}$	<i>Σ</i> ΔD	С	Cm	К
F 805								
0 11 16 22 51 70 98 140 182 255	1847 1838 1831 1823 1820 1800 1734 1537 1427	3543 3543 3542 3542 3542 3541 3539 3537 3534 3537	2550 2552 2553 2555 2556 2560 2575 2619 2641 2641	2550 2557 2561 2565 2579 2591 2618 2682 2722 2763	0 3 4 5 13 17 24 32 40 52	15184 15183 15182 15180 15184 15181 15166 15112 15085 15075	15184 15183 15183 15182 15182 15182 15182 15180 15168 15152 15131	0 1 2 3 6 8 12 16 18 22
255 318 375 421	1267 1122 1037	3517 3498 3488	2649 2661 2674 2681	2803 2842 2871	62 70 77	15075 15051 15008 14984	15117 15104 15092	25 26 2 6
F 806								
0 8 17 23 53 73 100 169 250 317 370 424 498 573 675 744 800 883 982 1233 1596 1880	1833 1820 1814 1811 1717 1574 1496 1346 1286 1171 1062 968 889 822 740 675 623 538 479 341 254 216	3534 3533 3534 3530 3526 3530 3528 3521 3506 3490 3477 3461 3454 3454 3454 3446 3446 3446 3446 3446	2547 2549 2552 2552 2569 2606 2628 2653 2660 2671 2679 2685 2690 2695 2702 2702 2702 2709 2714 2722 2729 2750 2767 2775	2547 2553 2559 2562 2593 2638 2672 2729 2772 2813 2845 2876 2915 2955 3008 3047 3078 3126 3178 3316 3499 3635	0 2 4 6 13 17 22 34 46 56 64 71 80 90 102 110 116 124 134 155 179 195	$15178 \\ 15176 \\ 15175 \\ 15152 \\ 15152 \\ 15093 \\ 15055 \\ 15048 \\ 15016 \\ 14986 \\ 14986 \\ 14927 \\ 14940 \\ 14927 \\ 14910 \\ 14896 \\ 14885 \\ 14863 \\ 14865 \\ 14865 \\ 14896 \\ 1489$	15178 15177 15176 15169 15159 15144 15015 15094 15081 15070 15057 15041 15027 15010 15000 14993 14981 14969 14944 14923 14917	0 1 2 3 6 8 10 13 16 17 17 16 14 10 5 0 4- 11- 20- 46- 82- 105-
F 807								
0 8 16 25 59 93 124 164 208 297 369 399 466 523 589 698 762 821 921 1143	1857 1857 1857 1851 1692 1481 1418 1362 1323 1224 1108 1008 905 840 783 709 643 590 540 431	3539 3539 3541 3534 3537 3540 3529 3524 3512 3495 3482 3470 3463 3453 3453 3453 3459 3449 3449 3451	2545 2545 2548 2581 2632 2648 2651 2655 2665 2674 2682 2690 2694 2699 2706 2712 2718 2718 2718 2725 2739	2545 2548 2552 2559 2607 2673 2703 2724 2748 2798 2840 2862 2900 2931 2966 3023 3059 3093 3093 3145 3261	0 2 4 6 14 21 26 33 40 53 63 63 63 63 63 63 91 104 111 117 127 148	15186 15189 15189 15147 15088 15073 15060 15053 15032 15003 14970 14942 14924 14913 14901 14886 14875 14870 14863	15186 15187 15188 15177 15155 15136 1519 15106 15087 15073 15067 15051 15038 15024 15006 14996 14996 14988 14975 14954	0 1 2 3 7 10 11 13 15 17 18 16 13 10 3 2- 7- 15- 35-

Р	т	S	σ_{t}	σ_{stp}	ΣΔD	С	C_{m}	к
F 808								
0 7 14 20 38 55 175 202 262 294 334 400 441 480	1945 1945 1941 1935 1900 1816 1415 1340 1125 1052 986 937 884	3542 3545 3545 3548 3548 3548 3525 3507 3499 3489 3480 3480 3480	2524 2528 2531 2541 2562 2641 2652 2668 2674 2679 2684 2687 2681	2524 2528 2534 2557 2586 2719 2743 2786 2806 2830 2864 2886 2886 2908	0 2 4 5 10 14 39 43 52 57 62 71 76 81	15211 15213 15212 15206 15185 15079 15059 15015 14996 14975 14962 14949 14935	15211 15212 15212 15210 15206 15155 15143 15119 15107 15092 15071 15061 15051	0 1 2 3 5 8 18 19 21 20 19 18 16
538 590	834 781	3463 3459	2695 2700	2939 2968	88 95	14925 14912	15038 15027	14 11
F 809								
0 10 20 30 49 60 101 145 200 273 338 373 433 510 591 654 702 758 812 1088 1405 1778	2014 2014 2014 2014 2006 1975 1817 1625 1563 1468 1349 1225 1102 982 895 821 740 671 605 453 308 226	3559 3559 3559 3559 3559 3558 3551 3546 3538 3524 3510 3494 3451 3449 3461 3455 3451 3448 3449 3459 3467	2519 2519 2519 2521 2520 2569 2610 2620 2635 2650 2664 2674 2684 2690 2696 2703 2709 2716 2735 2757 2771	2519 2524 2528 2532 2543 2556 2614 2674 2709 2757 2800 2831 2869 2913 2957 2991 3021 3054 3086 3232 3401 3585	0 3 6 8 14 17 27 37 47 60 71 77 86 96 107 115 121 127 133 160 185 208	15232 15234 15235 15237 15238 15231 15193 15143 15143 15143 15084 15045 15010 14978 14957 14939 14915 14896 14879 14862 14854 14882	15232 15233 15234 15234 15236 15235 15226 15208 15189 15171 15157 15148 15131 15110 15091 15077 15066 15054 15054 15054 15054 15054 15054 15054 15054	0 2 3 5 8 9 15 20 25 31 35 37 38 36 33 31 27 23 1- 31- 64-
F 810								
0 10 20 30 50 75 158 220 295 374 428 479 529 602 665 739 833 891 1068 1236	2021 2021 2019 2014 1792 1481 1405 1287 1168 1028 920 822 741 679 609 547 547 512 396 311	3560 3561 3560 3555 3540 3531 3518 3503 3486 3472 3462 3455 3452 3455 3452 3449 3449 3449 3449 3449 3453	2518 2519 2519 2520 2573 2634 2643 2658 2669 2681 2689 2696 2703 2709 2716 2723 2728 2728 2728 2724 2727	2518 2523 2528 2532 2606 2704 2741 2790 2837 2837 2837 2905 2936 2976 3012 3053 3103 3135 3234 3325	0 3 6 8 14 20 37 48 60 72 79 86 92 101 108 116 125 131 146 158	15234 15236 15237 15238 15240 15182 15082 15054 15025 14982 14949 14949 14949 14898 14885 14885 14854 14836 14828	15234 15235 15236 15237 15229 15182 15156 15134 15114 15100 15085 15071 15036 15020 15002 14992 14968 14949	0 2 3 5 8 11 19 23 26 28 28 27 20 16 10 1 5 - 23- 42-

Р	т	S	σ_{t}	$\sigma_{ m stp}$	ΣΔD	С	Cm	К
F 811								
0 5 10 18 31 58 82 130 181 229 279 330 373 430 478 522 615 631 761 894 1200 1520	1920 1919 1918 1916 1899 1738 1528 1405 1357 1299 1213 1112 1043 950 880 850 850 850 850 850 850 850 850 8	3535 3535 3535 3536 3541 3530 3528 3521 3510 3497 3487 3476 3469 3465 3469 3465 3461 3455 3451 3451 3456 3464	2526 2526 2527 2532 2576 2617 2643 2651 2658 2666 2675 2680 2687 2693 2694 2693 2694 2698 2705 2710 2726 2750 2766	2526 2528 2531 2535 2601 2654 2701 2732 2760 2791 2823 2848 2881 2909 2931 2977 2992 3056 3134 3300 3464	0 1 3 5 8 15 20 29 37 44 52 59 65 72 78 84 95 97 112 125 151 172	15203 15205 15204 15205 15202 15161 15068 15061 15048 15027 14998 14978 14978 14934 14928 14926 14896 14895 14860 14842 14852	15203 15204 15204 15204 15194 15175 15141 15120 15106 15093 15081 15070 15056 15045 15035 15019 15016 14995 14978 14924	0 1 2 4 7 10 12 14 16 17 18 17 16 14 12 8 7 2- 13- 44- 77-
F 812								
0 10 20 30 50 70 90 110 160 289 369 420 466 532	1914 1914 1903 1805 1592 1468 1398 1351 1249 1117 998 921 832	3540 3540 3541 3540 3538 3537 3533 3527 3514 3498 3483 3474 3467	2531 2532 2534 2558 2608 2635 2646 2652 2662 2662 2662 2684 2690 2699	2531 2535 2541 2547 2580 2639 2675 2696 2723 2791 2841 2874 2901 2940	0 3 5 8 13 17 21 24 32 52 64 71 77 85	15202 15204 15205 15204 15179 15118 15083 15063 15055 15041 15006 14970 14948 14923	15202 15203 15204 15199 15185 15166 15149 15121 15088 15074 15063 15053 15038	0 1 3 4 7 9 10 11 13 13 17 18 18 16 14
F 813								
0 10 20 30 47 68 85 146 200 281 358 417 495 551 602 660 707 755 1046	1951 1950 1948 1939 1937 1653 1530 1390 1300 1300 1180 1079 1005 929 882 824 769 692 620 443	3538 3538 3538 3538 3539 3530 3520 3505 3492 3483 3475 3470 3464 3460 3456 3453 3452	2520 2521 2523 2596 2622 2646 2657 2668 2677 2683 2690 2693 2693 2698 2703 2710 2718 2718	2520 2525 2529 2536 2544 2626 2660 2711 2746 2795 2838 2871 2913 2942 2970 3002 3002 3032 3062 3217	0 3 6 8 13 18 21 32 40 52 63 71 81 88 95 102 107 112 139	15212 15214 15215 15216 15137 15102 15066 15043 15015 14990 14972 14956 14946 14931 14919 14897 14876 14852	15212 15213 15214 15214 15203 15186 15143 15193 15074 15060 15045 15035 15027 15018 15011 15003 14964	0 1 3 4 7 9 11 14 16 17 18 17 15 13 11 8 5 1 25-

Р	Т	S	$\sigma_{ m t}$	$\sigma_{ m stp}$	ΣΔD	С	$C_{\rm m}$	к
F 814								
0 5 10 21 34 50 73 100 150 244 310 372 430 478 584 640 727 789 982 1072 1420	1987 1983 1974 1961 1959 1767 1570 1441 1375 1269 1159 1050 973 867 793 736 667 611 510 429 287	3549 3546 3543 3545 3540 3538 3529 3517 3503 3490 3479 3467 3459 3455 3451 3450 3450 3450 3450 3452 3461	2519 2520 2521 2523 2568 2613 2640 2648 2660 2671 2681 2685 2693 2698 2703 2710 2717 2729 2740 2761	2519 2522 2524 2530 2538 2590 2645 2684 2715 2770 2810 2848 2879 2910 2963 2994 3076 3177 3230 3412	0 1 3 6 9 14 18 23 31 46 56 64 72 78 91 97 107 114 133 141 167	15223 15224 15219 15222 15168 15112 15075 15061 15040 15012 14981 14962 14929 14917 14903 14889 14878 14868 14849 14849 14849	15223 15224 15223 15221 15213 15190 15164 15132 15100 15084 15070 15084 15070 15045 15023 15013 14999 14990 14967 14958 14931	0 1 3 5 7 9 11 13 16 17 16 14 9 5 1- 22- 30- 65-
F 815								
0 11 18 25 43 68 82 124 245 304 327 385 454 512 557 600 659 705 851 1200	2014 2013 2010 1996 1976 1832 1643 1405 1304 1196 1089 1003 913 847 786 733 656 619 504 331	3547 3547 3545 3543 3539 3536 3532 3521 3506 3493 3482 3471 3464 3458 3454 3450 3449 3449 3458	2510 2511 2513 2517 2551 2594 2644 2657 2666 2676 2683 2689 2694 2699 2699 2699 2699 2703 2711 2715 2729 2754	2510 2515 2519 2524 2536 2581 2631 2766 2802 2823 2856 2894 2926 2951 2976 3011 3036 3118 3306	0 3 5 7 12 19 22 30 49 58 61 69 78 85 91 96 102 107 122 150	15231 15232 15230 15226 15190 15135 15068 15052 15023 14988 14965 14942 14925 14909 14895 14874 14867 14844 14830	15231 15232 15232 15230 15222 15212 15174 15118 15102 15095 15077 15058 15044 15034 15024 15024 15022 15002 14977 14936	0 2 3 4 7 10 12 14 19 21 21 20 18 15 13 10 5 1 13- 51-
F 816								
0 5 13 19 44 64 87 119 187 240 307 361 397 458 536	2022 2022 2013 1980 1794 1557 1419 1884 1268 1191 1097 1028 951 876	3525 3525 3524 3522 3532 3533 3525 3518 3507 3495 3487 3478 3470	2491 2491 2493 2500 2555 2612 2642 2527 2661 2668 2668 2668 2682 2688 2688 2694	2491 2494 2501 2519 2583 2650 2695 2609 2769 2806 2838 2861 2895 2936	0 2 4 6 13 19 24 30 45 56 66 73 78 86 96	15230 15232 15231 15226 15178 15110 15071 15222 15040 15022 14997 14978 14958 14942	15230 15231 15231 15230 15221 15201 15171 15162 15155 15128 15110 15099 15081 15062	0 1 2 3 7 9 12 14 20 25 26 27 26 25 22

P	Т	S	σ_{t}	$\sigma_{\rm stp}$	ΣΔD	С	Cm	к
F 816 cont. 580 633 720 877	828 761 699 589	3465 3460 3456 3452	2698 2704 2709 2721	2960 2991 3036 3120	101 108 118 134	14930 14913 14903 14884	15052 15041 15025 15001	20 17 12 1
F 817								
0 7 15 27 47 69 95 112 151 264 337 354 413 491 563 623 623 682 723 773 1039 1405	1948 1984 1983 1977 1952 1710 1556 1449 1387 1330 1249 1157 1045 967 891 882 751 704 646 482 2 97	3525 3525 3525 3523 3530 3542 3536 3530 3524 3514 3503 3488 3479 3472 3465 3460 3457 3451 3451 3462	2511 2502 2503 2508 2574 2619 2638 2646 2654 2662 2671 2680 2686 2693 2689 2693 2689 2705 2710 2715 2733 2761	2511 2504 2508 2515 2529 2604 2661 2688 2714 2771 2813 2830 2866 2908 2948 2948 2948 2948 2970 3014 3038 3067 3207 3405	0 2 4 8 14 20 25 28 34 52 64 66 74 85 94 102 109 114 119 145 173	15210 15221 15223 15219 15153 15113 15080 15065 15065 15065 15047 15018 14986 14969 14951 14958 14917 14905 14890 14866 14850	15210 15216 15219 15221 15221 15210 15189 15174 15148 15112 15100 15097 15083 15066 15053 15043 15034 15027 15018 14982 14950	0 1 2 4 7 10 12 13 15 20 22 23 23 23 22 20 18 15 13 9 12- 47-
F 818								
0 9 17 24 45 62 82 128 190 262 313 361 414 498 547 592 654 707 900 1100	1960 1960 1965 1928 1814 1435 1412 1369 1258 1171 1097 1004 923 857 802 716 659 550 440	3532 3534 3536 3535 3535 3535 3535 3535 3526 3515 3504 3495 3485 3469 3469 3464 3455 3452 3452 3454	2513 2514 2520 2524 2552 2640 2643 2647 2661 2669 2676 2685 2691 2696 2701 2709 2714 2726 2740	2513 2517 2522 2530 2544 2580 2677 2701 2732 2778 2810 2838 2871 2915 2944 2969 3006 3036 3136 3136 3243	0 3 5 7 13 17 21 29 39 50 58 64 72 82 88 94 101 107 126 144	15214 15216 15217 15214 15183 15070 15065 15039 15016 14997 14970 14954 14936 14921 14898 14884 14872 14859	15214 15215 15216 15215 15210 15190 15147 15121 15102 15090 15079 15066 15049 15039 15031 15019 15010 14981 14960	0 1 2 3 6 9 10 13 15 18 19 19 18 16 14 12 8 5 11- 29-
F 819								
0 11 19 20 46 66 120 225 287 306	1896 1896 1893 1892 1595 1416 1329 1238 1158	3535 3535 3535 3534 3534 3534 3533 3525 3514 3503	2532 2532 2532 2532 2604 2643 2655 2664 2664	2532 2537 2540 2541 2552 2633 2696 2755 2793 2808	0 3 5 12 17 27 44 53 56	15197 15198 15200 15199 15203 15119 15070 15058 15036 15010	15197 15197 15198 15198 15200 15188 15146 15108 15094 15090	0 1 3 6 8 12 16 18 18

P	T	S	σ_{t}	$\sigma_{ m stp}$	ΣΔD	С	Cm	К
F 819 cont.								
358 411 542 619 683 790 895	1070 973 906 864 812 758 657 579	3492 3481 3473 3468 3464 3460 3454 3453	2679 2687 2692 2694 2699 2704 2714 2723	2840 2872 2914 2940 2980 3014 3073 3131	63 70 80 96 103 115 126	14987 14959 14946 14937 14930 14920 14897 14882	15077 15063 15045 15035 15022 15013 14999 14986	18 17 15 13 9 6 1- 8-
1190	372	34.55	2748	3293	152	14845	14955	35-

MEMOIRS OF THE NEW ZEALAND OCEANOGRAPHIC INSTITUTE

Memoir			Memoir		
No.	Year	Title	No.	Year	
[1]	1955	Bibliography of New Zealand Oceanography, 1949–1953. By N.Z. OCEANOGRAPHIC COM- MITTEE. N.Z. Dep. scient. ind. Res. geophys.	14	1963	Submari Island, Bull. N.2
[2]	1957	General Account of the Chatham Islands	15	In prep.	Marine Brodie.
	40.00	1954 Expedition. By G. A. KNOX. Bull. N.Z. Dep. scient. ind. Res. 122.	16	1963	Bibliogra 1769–18
3	1959	Contributions to Marine Microbiology. Com- piled by T. M. SKERMAN. Inf. Ser. N.Z. Dep. scient. ind. Res. 22.	17	1965	Dep. scie Studies
4	1960	Biological Results of the Chatham Islands 1954 Expedition. Part 1. Decapoda Brachyura, by R. K. DELL; Cumacea by N. S. JONES; Decapoda Natantia, by J. C. YALDWYN. Bull NZ Den scient ind Res 139(1)	18	1961	Res. 157 The Fa Ophiuro Bull. N.2
5	1960	Biological Results of the Chatham Islands 1954 Expedition. Part 2. Archibenthal and Littoral Echinoderms. By H. BARRACLOUGH FELL Rull NZ Den scient ind Res 139(2)	19 20	1962 1963	The Fa Scleracti Bull. N.2 Flabellur
6	1960	Biological Results of the Chatham Islands 1954 Expedition. Part 3. Polychaeta Errantia. By G. A. KNOX. Bull. N.Z. Dep. scient. ind.	21	1963	By Down scient. in The Fa
7	10.00	<i>Res. 139(3)</i> .			Asteroid Bull. N.2
/	1960	Biological Results of the Charnam Islands 1954 Expedition. Part 4. Marine Mollusca, by R. K. DELL; Sipunculoidea, by S. J. EDWARDS, Bull. N.Z. Dep. scient, ind. Res.	22	1964	The Mar Brachyu scient. in
8	1961	139(4). Hydrology of New Zealand Coastal Waters, 1955. By D. M. GARNER. Bull. N.Z. Dep. scient, ind. Res. 138.	23	1963	The M Crustace N. S. J <i>Res. 152</i>
9	1962	Analysis of Hydrological Observations in the New Zealand Region, 1874–1955. By D. M. GARNER. Bull. N.Z. Dep. scient, ind. Res. 144.	24	1964	A Bibli the Tas By BETT ind. Res.
10	1961	Hydrology of Circumpolar Waters South of New Zealand. By R. W. BURLING. Bull. N.Z. Dep. scient. ind. Res. 143.	25	1965	A Foran Continer By R.
11	1964	Bathymetry of the New Zealand Region. By J. W. BRODIE. Bull. N.Z. Dep. scient. ind.	26	1964	I. D. J. ind. Res. Sediment
12	1965	Hydrology of New Zealand Offshore Waters. By D. M. GARNER and N. M. RIDGWAY.	27	1965	NORRIS. The Faux
13	1961	Biological Results of the Chatham Islands			culoidea.
		1954 Expedition. Part 5. Porifera: Demospongiae, by PATRICIA R. BERGOUIST: Porifera: Keratosa, by PATRICIA	28	1966	Sedimen PANTIN.
		R. BERGQUIST; Crustacea Isopoda: Bopyridae, by RICHARD B. PIKE; Crustacea Isopoda: Serolidae, by D. E. HURLEY; Hydroida, by PATRICIA M. RALPH. Bull. N.Z. Dep. scient. ind. Res. 139(5).	29	1964	Biologica 1954 Ex D. F. S <i>Res. 139</i>

4	1963	Submarine Morphology East of the North
		Island, New Zealand. By H. M. PANTIN. Bull. N.Z. Dep. scient. ind. Res. 149.

Title

- 5 In prep. Marine Geology of Cook Strait. By J. W. BRODIE. Bull. N.Z. Dep. scient. ind. Res.
- 1963 Bibliography of New Zealand Marine Zoology 1769–1899. By DOROTHY FREED. Bull. N.Z. Dep. scient. ind. Res. 148.
- 1965 Studies of a Southern Fiord. By T. M. SKERMAN (Ed.) Bull. N.Z. Dep. scient. ind. Res. 157.
- 1961 The Fauna of the Ross Sea. Part 1. Ophiuroidea. By H. BARRACLOUGH FELL. Bull. N.Z. Dep. scient. ind. Res. 142.
- 9 1962 The Fauna of the Ross Sea. Part 2. Scleractinian Corals. By DONALD F. SQUIRES. Bull. N.Z. Dep. scient. ind. Res. 147.
- 1963 Flabellum rubrum (Quoy and Gaimard). By DONALD F. SQUIRES. Bull. N.Z. Dep. scient. ind. Res. 154.
- 1 1963 The Fauna of the Ross Sea. Part 3. Asteroidea. By HELEN E. SHEARBURN CLARK. Bull. N.Z. Dep. scient. ind. Res. 151.
 - 1964 The Marine Fauna of New Zealand: Crustacea Brachyura. By E. W. BENNETT, Bull. N.Z. Dep. scient. ind. Res. 153.
- 1963 The Marine Fauna of New Zealand: Crustaceans of the Order Cumacea. By N. S. JONES, Bull. N.Z. Dep. scient. ind. Res. 152.
- 1964 A Bibliography of the Oceanography of the Tasman and Coral Seas, 1860–1960. By BETTY N. KREBS. Bull. N.Z. Dep. scient. ind. Res. 156.
- 1965 A Foraminiferal Fauna from the Western Continental Shelf, North Island, New Zealand. By R. H. HEDLEY, C. M. HURDLE, and I. D. J. BURDETT. Bull. N.Z. Dep. scient. ind. Res. 163.
- 1964 Sediments of Chatham Rise. By ROBERT M. NORRIS. Bull. N.Z. Dep. scient. ind. Res. 159.
- 1965 The Fauna of the Ross Sea. Part 4. Mysidacea. By OLIVE S. TATTERSALL. Part 5. Sipunculoidea. By S. J. EDMONDS. Bull. N.Z. Dep. scient. ind. Res. 167.
- 1966 Sedimentation in Hawke Bay. By H. M. PANTIN. Bull. N.Z. Dep. scient. ind. Res. 171.
- 1964 Biological Results of the Chatham Islands 1954 Expedition. Part 6. Scleractinia. By D. F. SQUIRES. Bull. N.Z. Dep. scient. ind. Res. 139 (6).

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/

	35	1966	The Marine Fauna of New Zealand: Spider Crabs, Family Majidae (Crustacea Brachyura). By D. J. GRIFFIN. Bull. N.Z. Dep. scient. ind. Res. 172.	49	1969	The Fauna of the gonida 1: Coloss deidae and Amm J. W. HEDGPETH Res. 198.
	36	1967	Water Masses and Fronts in the Southern Ocean South of New Zealand. By TH. J. HOUTMAN. Bull. N.Z. Dep. scient. ind. Res. 174.	50	1969	Marine Geology antarctic Sea Fl Bull. N.Z. Dep. S
	37	1968	The Marine Fauna of New Zealand: Porifera, Demospongiae. Part 1. Tetractinomorpha and Lithistida. By PATRICIA R. BERGQUIST. Bull. N.Z. Dep. scient. ind. Res. 188	51	In press	The Marine Fau Demospongiae. Halichondrida. Bull. N.Z. Dep. s
	38	1967	The Marine Fauna of New Zealand: Intertidal Foraminifera of the <i>Corallina</i> officinalis zone. By R. H. HEDLEY, C. M. HURDLE and I. D. J. BURDETT. Bull. N.Z.	52	In press	The Marine Fa Cucumbers (Ech By D. L. Pawso <i>Res.</i>
	20	10(7	Dep. scient. ind. Res. 180.	53	In press	Plankton of Hau Bull, N.Z. Dep. 3
	39	1967	Region. By D. M. GARNER. Bull. N.Z. Dep. scient. ind. Res. 177.	54	In press	Studies on New Pelagic Copepod
	40	1967	Sediments of the Western Shelf, North Island, New Zealand. By J. C. McDougall and J. W. BRODIE. Bull. N.Z. Dep. scient.			key to Pelagic C Environmental V By J. M. BRADE ind. Res.
	41	1967	Bathymetric and Geological Structure of the North-western Tasman Sea – Coral Sea –	55	In press	Bay Head Sand New Zealand. By Dep. scient. ind.
			South Solomon Sea Area of the South-western Pacific Ocean. By DALE C. KRAUSE. Bull. N.Z. Dep. scient. ind. Res. 183.	56	In press	Hydrology of the Region. By N. N scient. ind. Res.
	42	1968	The Echinozoan Fauna of the New Zealand Subantarctic Islands, Macquarie Island and the Chatham Rise. By D. L. PAWSON. Bull. N.Z. Dep. scient. ind. Res. 187.	57	In press	Biological Results 1954 Expedition ozoa. By G. H. Bull. N.Z. Dep
			A. R. SHEARER, GOVERNMENT PRINTER, V	/ELLING	TON, NEV	W ZEALAND—1970
is work is	licensed u	nder the (Creative Commons Attribution-NonCommercial-NoDerivs 3.0	Unported	License.	
view a co	upy of this l	icense, vi	sii hiip.i/creativecommons.org/licenses/by-nc-nd/3.0/			

Memoir
No.

43

Year

30	1966	Geology and Geomagnetism of the Bounty Region east of the South Island, New Zealand. By D. C. KRAUSE. Bull. N.Z. Dep. scient. ind. Res. 170.

Title

Memoir

No.

Year

- 31 In prep. Marine Biology, Hydrology, Physiography of Manihiki Atoll, Cook Islands, Compiled by C. MCCANN and J. S. BULLIVANT. Bull. N.Z. Dep. scient. ind. Res.
- 32 1967 The Fauna of the Ross Sea. Part 5. General Accounts, Station Lists, and Benthic Ecology. By JOHN S. BULLIVANT and JOHN H. DEARBORN. Bull. N.Z. Dep. scient. ind. Res. 176.
- The Submarine Geology of Foveaux Strait. By D. J. CULLEN. Bull. N.Z. Dep. scient. 33 1967 ind. Res. 184.
- Benthic Ecology of Foveaux Strait. By E. W. DAWSON. Bull. N.Z. Dep. scient. ind. Res. 34 In prep.

The Marine Fauna of New Zealand. Sclerac-tinian Corals. By D. F. SQUIRES and I. W. KEYES. Bull. N.Z. Dep. scient. ind. Res. 185. 1967

Title

- A Checklist of Recent New Zealand Fora-minifera. By J. V. EADE. Bull. N.Z. Dep. scient. ind. Res. 182. 44 1967
- A Key to the Recent Genera of the Fora-45 In press minifera. By K. B. LEWIS. Bull. N.Z. Dep. scient. ind. Res. 196.
- The Fauna of the Ross Sea. Part 6. Ecology 46 1968 and Distribution of Foraminifera. By J. P. KENNETT. Bull. N.Z. Dep. scient. ind. Res. 186.
- An Outline Distribution of the New Zealand Shelf Fauna. Echinoidea. By D. G. MCKNIGHT. Bull. N.Z. Dep. scient. ind. Res. 47 1969 195.
- 48 1967 Hydrology of the South-east Tasman Sea. By D. M. GARNER. Bull. N.Z. Dep. scient. ind. Res. 181.
- 1969 The Fauna of the Ross Sea. Part 7. Pycnogonida 1: Colossendeidae, Pycnogonidae, En-deidae and Ammotheidae. By W. G. Fry and J. W. HEDGPETH. Bull. N.Z. Dep. scient. ind. Res. 198.
- Marine Geology of the New Zealand Sub-antarctic Sea Floor. By C. P. SUMMERHAYES. Bull. N.Z. Dep. scient. ind. Res. 190. 1969
- The Marine Fauna of New Zealand: Porifera, In press Demospongiae. Part 2. Axinellidae and Halichondrida. By PATRICIA R. BERGQUIST. Bull. N.Z. Dep. scient. ind. Res. 197.
- The Marine Fauna of New Zealand: Sea In press Cucumbers (Echinodermata; Holothuroidea). By D. L. PAWSON. Bull. N.Z. Dep. scient. ind. Res.
- In press Plankton of Hauraki Gulf. By J. B. JILLETT. Bull. N.Z. Dep. scient. ind. Res.
- Studies on New Zealand Plankton. Part 1. In press Pelagic Copepoda from New Zealand with a key to Pelagic Genera. Part 2. Plankton and Environmental Variation (Kaikoura 1964–65). By J. M. BRADFORD. *Bull. N.Z. Dep. scient.* ind. Res.
- In press Bay Head Sand Beaches of Banks Peninsula, New Zealand. By P. R. DINGWALL. Bull. N.Z. Dep. scient. ind. Res.
- In press Hydrology of the Southern Kermadec Trench Region. By N. M. RIDGWAY. Bull. N.Z. Dep. scient. ind. Res.
- Biological Results of the Chatham Islands 1954 Expedition. Part 7. Chelostomate Bry-ozoa. By G. H. UTTLEY and J. S. BULLIVANT. In press Bull. N.Z. Dep. scient. ind. Res.

1.400/2/60-60023 A

A. R. SHEARER, GOVERNMENT PRINTER, WELLINGTON, NEW ZEALAND-1970

